Abstract

We demonstrate theoretically that by embedding plasmonic honeycomb nanoantenna arrays into the active layers of inorganic (c-Si) and organic (P3HT:PCBM/PEDOT:PSS) thin film solar cells, absorption efficiency can be improved. To obtain the solar cell absorption spectrum that conforms to the solar radiation, spectral broadening is achieved by breaking the symmetry within the Wigner–Seitz unit cell on a uniform hexagonal grid. For optimized honeycomb designs, absorption efficiency enhancements of 106.2% and 20.8% are achieved for c-Si and P3HT:PCBM/PEDOT:PSS thin film solar cells, respectively. We have demonstrated that the transverse modes are responsible for the enhancement in c-Si solar cells, whereas both the longitudinal and transverse modes, albeit weaker, are the main enhancement mechanisms for P3HT:PCBM/PEDOT:PSS solar cells. For both inorganic and organic solar cells, the absorption enhancement is independent of polarization.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
    [CrossRef]
  2. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
    [CrossRef]
  3. M. A. Green, K. Emery, Y. Hisikawa, and W. Warta, Prog. Photovolt. 15, 425 (2007).
    [CrossRef]
  4. R. B. Dunbar, T. Pfadler, and L. Schmidt-Mende, Opt. Express 20, A177 (2012).
    [CrossRef]
  5. S. Y. Chou and W. Ding, Opt. Express 21, A60 (2013).
    [CrossRef]
  6. D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, J. Sol. Energy Eng. 132, 011014 (2010).
    [CrossRef]
  7. K. R. Catchpole and A. Polman, Appl. Phys. Lett. 93, 191113 (2008).
    [CrossRef]
  8. C. Rockstuhl, S. Fahr, and F. Lederer, J. Appl. Phys. 104, 123102 (2008).
    [CrossRef]
  9. M. A. Sefunc, A. K. Okyay, and H. V. Demir, Appl. Phys. Lett. 98, 093117 (2011).
    [CrossRef]
  10. X. Sheng, J. Hu, J. Michel, and L. C. Kimerling, Opt. Express 20, A496 (2012).
    [CrossRef]
  11. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett. 8, 4391 (2008).
    [CrossRef]
  12. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Nat. Commun. 2, 517 (2011).
    [CrossRef]
  13. R. U. Tok, C. Ow-Yang, and K. Şendur, Opt. Express 19, 22731 (2011).
    [CrossRef]
  14. R. U. Tok and K. Şendur, J. Quant. Spectrosc. Radiat. Transfer 120, 70 (2013).
    [CrossRef]
  15. J. N. Munday and H. A. Atwater, Nano Lett. 11, 2195 (2011).
    [CrossRef]
  16. M. A. Sefunc, A. K. Okyay, and H. V. Demir, Opt. Express 19, 14200 (2011).
    [CrossRef]
  17. R. U. Tok and K. Şendur, Phys. Rev. A 84, 033847 (2011).
    [CrossRef]
  18. E. S. Ünlü, R. U. Tok, and K. Şendur, Opt. Express 19, 1000 (2011).
    [CrossRef]
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  20. F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, Solar Energy Mater. Solar Cells 91, 405 (2007).
    [CrossRef]
  21. H. Hoppe, N. S. Sariciftci, and D. Meissner, Mol. Cryst. Liq. Cryst. 385, 113 (2002).
    [CrossRef]
  22. I. H. Malitson, J. Opt. Soc. Am. 55, 1205 (1965).
    [CrossRef]

2013

S. Y. Chou and W. Ding, Opt. Express 21, A60 (2013).
[CrossRef]

R. U. Tok and K. Şendur, J. Quant. Spectrosc. Radiat. Transfer 120, 70 (2013).
[CrossRef]

2012

2011

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Nat. Commun. 2, 517 (2011).
[CrossRef]

R. U. Tok, C. Ow-Yang, and K. Şendur, Opt. Express 19, 22731 (2011).
[CrossRef]

M. A. Sefunc, A. K. Okyay, and H. V. Demir, Appl. Phys. Lett. 98, 093117 (2011).
[CrossRef]

J. N. Munday and H. A. Atwater, Nano Lett. 11, 2195 (2011).
[CrossRef]

M. A. Sefunc, A. K. Okyay, and H. V. Demir, Opt. Express 19, 14200 (2011).
[CrossRef]

R. U. Tok and K. Şendur, Phys. Rev. A 84, 033847 (2011).
[CrossRef]

E. S. Ünlü, R. U. Tok, and K. Şendur, Opt. Express 19, 1000 (2011).
[CrossRef]

2010

H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
[CrossRef]

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, J. Sol. Energy Eng. 132, 011014 (2010).
[CrossRef]

2009

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

2008

K. R. Catchpole and A. Polman, Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

C. Rockstuhl, S. Fahr, and F. Lederer, J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett. 8, 4391 (2008).
[CrossRef]

2007

M. A. Green, K. Emery, Y. Hisikawa, and W. Warta, Prog. Photovolt. 15, 425 (2007).
[CrossRef]

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, Solar Energy Mater. Solar Cells 91, 405 (2007).
[CrossRef]

2002

H. Hoppe, N. S. Sariciftci, and D. Meissner, Mol. Cryst. Liq. Cryst. 385, 113 (2002).
[CrossRef]

1965

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Nat. Commun. 2, 517 (2011).
[CrossRef]

J. N. Munday and H. A. Atwater, Nano Lett. 11, 2195 (2011).
[CrossRef]

H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett. 8, 4391 (2008).
[CrossRef]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Nat. Commun. 2, 517 (2011).
[CrossRef]

Bailly, S.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, Solar Energy Mater. Solar Cells 91, 405 (2007).
[CrossRef]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Nat. Commun. 2, 517 (2011).
[CrossRef]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

Catchpole, K. R.

K. R. Catchpole and A. Polman, Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

Chou, S. Y.

de Bettignies, R.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, Solar Energy Mater. Solar Cells 91, 405 (2007).
[CrossRef]

Defranoux, C.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, Solar Energy Mater. Solar Cells 91, 405 (2007).
[CrossRef]

Demir, H. V.

M. A. Sefunc, A. K. Okyay, and H. V. Demir, Opt. Express 19, 14200 (2011).
[CrossRef]

M. A. Sefunc, A. K. Okyay, and H. V. Demir, Appl. Phys. Lett. 98, 093117 (2011).
[CrossRef]

Ding, W.

Dunbar, R. B.

Emery, K.

M. A. Green, K. Emery, Y. Hisikawa, and W. Warta, Prog. Photovolt. 15, 425 (2007).
[CrossRef]

Escoubas, L.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, Solar Energy Mater. Solar Cells 91, 405 (2007).
[CrossRef]

Fahr, S.

C. Rockstuhl, S. Fahr, and F. Lederer, J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Nat. Commun. 2, 517 (2011).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett. 8, 4391 (2008).
[CrossRef]

Flory, F.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, Solar Energy Mater. Solar Cells 91, 405 (2007).
[CrossRef]

Green, M. A.

M. A. Green, K. Emery, Y. Hisikawa, and W. Warta, Prog. Photovolt. 15, 425 (2007).
[CrossRef]

Guillerez, S.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, Solar Energy Mater. Solar Cells 91, 405 (2007).
[CrossRef]

Hisikawa, Y.

M. A. Green, K. Emery, Y. Hisikawa, and W. Warta, Prog. Photovolt. 15, 425 (2007).
[CrossRef]

Hoppe, H.

H. Hoppe, N. S. Sariciftci, and D. Meissner, Mol. Cryst. Liq. Cryst. 385, 113 (2002).
[CrossRef]

Hu, J.

Kimerling, L. C.

Kotter, D. K.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, J. Sol. Energy Eng. 132, 011014 (2010).
[CrossRef]

Lederer, F.

C. Rockstuhl, S. Fahr, and F. Lederer, J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

Malitson, I. H.

Meissner, D.

H. Hoppe, N. S. Sariciftci, and D. Meissner, Mol. Cryst. Liq. Cryst. 385, 113 (2002).
[CrossRef]

Michel, J.

Monestier, F.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, Solar Energy Mater. Solar Cells 91, 405 (2007).
[CrossRef]

Munday, J. N.

J. N. Munday and H. A. Atwater, Nano Lett. 11, 2195 (2011).
[CrossRef]

Novack, S. D.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, J. Sol. Energy Eng. 132, 011014 (2010).
[CrossRef]

Okyay, A. K.

M. A. Sefunc, A. K. Okyay, and H. V. Demir, Appl. Phys. Lett. 98, 093117 (2011).
[CrossRef]

M. A. Sefunc, A. K. Okyay, and H. V. Demir, Opt. Express 19, 14200 (2011).
[CrossRef]

Ow-Yang, C.

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett. 8, 4391 (2008).
[CrossRef]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Pfadler, T.

Pinhero, P. J.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, J. Sol. Energy Eng. 132, 011014 (2010).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
[CrossRef]

K. R. Catchpole and A. Polman, Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl, S. Fahr, and F. Lederer, J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

Sariciftci, N. S.

H. Hoppe, N. S. Sariciftci, and D. Meissner, Mol. Cryst. Liq. Cryst. 385, 113 (2002).
[CrossRef]

Schmidt-Mende, L.

Sefunc, M. A.

M. A. Sefunc, A. K. Okyay, and H. V. Demir, Appl. Phys. Lett. 98, 093117 (2011).
[CrossRef]

M. A. Sefunc, A. K. Okyay, and H. V. Demir, Opt. Express 19, 14200 (2011).
[CrossRef]

Sendur, K.

R. U. Tok and K. Şendur, J. Quant. Spectrosc. Radiat. Transfer 120, 70 (2013).
[CrossRef]

R. U. Tok, C. Ow-Yang, and K. Şendur, Opt. Express 19, 22731 (2011).
[CrossRef]

R. U. Tok and K. Şendur, Phys. Rev. A 84, 033847 (2011).
[CrossRef]

E. S. Ünlü, R. U. Tok, and K. Şendur, Opt. Express 19, 1000 (2011).
[CrossRef]

Sheng, X.

Simon, J.-J.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, Solar Energy Mater. Solar Cells 91, 405 (2007).
[CrossRef]

Slafer, W. D.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, J. Sol. Energy Eng. 132, 011014 (2010).
[CrossRef]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett. 8, 4391 (2008).
[CrossRef]

Tok, R. U.

R. U. Tok and K. Şendur, J. Quant. Spectrosc. Radiat. Transfer 120, 70 (2013).
[CrossRef]

R. U. Tok, C. Ow-Yang, and K. Şendur, Opt. Express 19, 22731 (2011).
[CrossRef]

E. S. Ünlü, R. U. Tok, and K. Şendur, Opt. Express 19, 1000 (2011).
[CrossRef]

R. U. Tok and K. Şendur, Phys. Rev. A 84, 033847 (2011).
[CrossRef]

Torchio, P.

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, Solar Energy Mater. Solar Cells 91, 405 (2007).
[CrossRef]

Ünlü, E. S.

Warta, W.

M. A. Green, K. Emery, Y. Hisikawa, and W. Warta, Prog. Photovolt. 15, 425 (2007).
[CrossRef]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

Adv. Mater.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, Adv. Mater. 21, 3504 (2009).
[CrossRef]

Appl. Phys. Lett.

K. R. Catchpole and A. Polman, Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

M. A. Sefunc, A. K. Okyay, and H. V. Demir, Appl. Phys. Lett. 98, 093117 (2011).
[CrossRef]

J. Appl. Phys.

C. Rockstuhl, S. Fahr, and F. Lederer, J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

J. Opt. Soc. Am.

J. Quant. Spectrosc. Radiat. Transfer

R. U. Tok and K. Şendur, J. Quant. Spectrosc. Radiat. Transfer 120, 70 (2013).
[CrossRef]

J. Sol. Energy Eng.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, J. Sol. Energy Eng. 132, 011014 (2010).
[CrossRef]

Mol. Cryst. Liq. Cryst.

H. Hoppe, N. S. Sariciftci, and D. Meissner, Mol. Cryst. Liq. Cryst. 385, 113 (2002).
[CrossRef]

Nano Lett.

J. N. Munday and H. A. Atwater, Nano Lett. 11, 2195 (2011).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett. 8, 4391 (2008).
[CrossRef]

Nat. Commun.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Nat. Commun. 2, 517 (2011).
[CrossRef]

Nat. Mater.

H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
[CrossRef]

Opt. Express

Phys. Rev. A

R. U. Tok and K. Şendur, Phys. Rev. A 84, 033847 (2011).
[CrossRef]

Prog. Photovolt.

M. A. Green, K. Emery, Y. Hisikawa, and W. Warta, Prog. Photovolt. 15, 425 (2007).
[CrossRef]

Solar Energy Mater. Solar Cells

F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, Solar Energy Mater. Solar Cells 91, 405 (2007).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic illustration of the top view of the honeycomb array with its corresponding parameters. L1, L2, and L3 are the lengths of the particles, and β1, β2, and β3 are the apex angles of the particles. Incident field polarizations, ETM and ETE, are shown with red and blue arrows, respectively. (b) Schematic illustration of an individual particle. t is the thickness, and w is the width of the apex of the particles. (c) Schematic illustration of c-Si thin film solar cell. A honeycomb structure of 40 nm thickness is patterned on the top surface of a 140 nm thick Ag layer. On top of the Ag layer there is a c-Si layer with 50 nm thickness in which the honeycomb array is embedded and a 20 nm thick SiO2 layer is placed on top the c-Si layer. (d) Schematic illustration of a P3HT:PCBM/PEDOT:PSS thin film solar cell. A honeycomb structure of 40 nm thickness is patterned on the top surface of a 140 nm thick Ag layer. On top of the Ag layer, there is a P3HT:PCBM layer with 100 nm thickness in which the honeycomb array is embedded. The P3HT:PCBM layer is followed by a 50 nm PEDOT:PSS, 150 nm ITO, and 100 nm glass.

Fig. 2.
Fig. 2.

(a) OAEE as a function of antenna length and β parameters for a plasmonic honeycomb embedded in c-Si solar cells. (b) AE of c-Si solar cells. (c) OAEE as a function of antenna length and β parameters for a honeycomb embedded in P3HC:PCBM/PEDOT:PSS thin film solar cells. (d) AE of P3HT:PCBM/PEDOT:PSS solar cells.

Fig. 3.
Fig. 3.

(a) AE of the c-Si solar cell with a honeycomb array of optimum antenna length (220 nm) as a function of wavelength and β sets. (b) AE of the reference (without honeycomb array) c-Si solar cell. (c) AEE of the c-Si solar cell. (d) AE of the P3HT:PCBM/PEDOT:PSS solar cell with honeycomb array of optimum antenna length (300 nm) as a function of wavelength and β sets. (e) AE of the reference (without honeycomb array) P3HT:PCBM/PEDOT:PSS solar cell. (f) AEE of the P3HT:PCBM/PEDOT:PSS solar cell.

Fig. 4.
Fig. 4.

Polarization dependence of the AEE of (a) thin film c-Si solar cell and (b) thin film P3HT:PCBM/PEDOT:PSS solar cell with a honeycomb of optimum design parameters.

Fig. 5.
Fig. 5.

(a) AEE for optimal honeycomb embedded c-Si solar cells. (b), (c) Spatial distribution of absorption (W/m3) in the c-Si layer 1 nm above the honeycomb for incident field 1V/m at λ=580nm for (b) TE and (c) TM polarizations, and (d) AEE for optimal honeycomb embedded P3HT:PCBM solar cells. (e), (f) Spatial distribution of absorption (W/m3) in the P3HT:PCBM layer 1 nm above the honeycomb for incident field 1V/m at λ=700nm for (e) TE and (f) TM polarizations.

Tables (1)

Tables Icon

Table 1. List of the β Parameters Used for Breaking the Symmetry of the Unit Cell

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

OAEE=λminλmax[ATM(λ)+ATE(λ)2]×AM1.5G(λ)dλλminλmaxAref(λ)×AM1.5G(λ)dλλminλmaxAref(λ)×AM1.5G(λ)dλ×100.
AE(λ)=[ATM(λ)+ATE(λ)2]I(λ),
AEE(λ)=[ATM(λ)+ATE(λ)2]Aref(λ)Aref(λ)×100.

Metrics