Abstract

We propose a low-loss terahertz waveguide Bragg grating (TWBG) fabricated using a plasmonic two-wire waveguide and a micromachined paper grating for potential applications in terahertz (THz) communications. Two TWBGs were fabricated with different periods and lengths. Transmission spectra of these TWBGs show 16 dB loss and 14 dB loss in the middle of their respective stop bands at 0.637 and 0.369 THz, with Q factors of 142 and 105, respectively. Insertion loss of 1–4 dB in the whole 0.1–0.7 THz region was also measured. Finally, TWBG modal dispersion relations, modal loss, and field distributions were studied numerically, and low-loss, high-coupling-efficiency operation of TWBGs was confirmed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).
  2. N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, Polym. Test. 28, 30 (2009).
    [CrossRef]
  3. N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, J. Inf. Millim. Terahertz. Waves 31, 1312 (2010).
    [CrossRef]
  4. S. F. Zhou, L. Reekie, H. P. Chan, Y. T. Chow, P. S. Chung, and K. M. Luk, Opt. Express 20, 9564 (2012).
    [CrossRef]
  5. Y. Guofeng, A. Markov, Y. Chinifooroshan, S. M. Tripathi, W. J. Bock, and M. Skorobogatiy, Opt. Lett. 38, 2200 (2013).
    [CrossRef]
  6. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, Opt. Express 19, B848 (2011).
    [CrossRef]
  7. S. Sree Harsha, N. Laman, and D. Grischkowsky, Appl. Phys. Lett. 94, 091 (2009).
  8. M. Gerhard, C. Imhof, and R. Zengerle, Opt. Express 18, 11707 (2010).
    [CrossRef]
  9. E. Lee, J. So, G. Park, D. Kim, C. Kee, and T. Jeon, Opt. Express 20, 6116 (2012).
    [CrossRef]
  10. K. Wang and D. M. Mittleman, Nature 432, 376 (2004).
    [CrossRef]
  11. A. Markov and M. Skorobogatiy, Opt. Express 21, 12728 (2013).
    [CrossRef]
  12. B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, Opt. Express 19, 24884 (2011).
    [CrossRef]

2013 (2)

2012 (2)

2011 (2)

2010 (2)

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, J. Inf. Millim. Terahertz. Waves 31, 1312 (2010).
[CrossRef]

M. Gerhard, C. Imhof, and R. Zengerle, Opt. Express 18, 11707 (2010).
[CrossRef]

2009 (2)

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, Polym. Test. 28, 30 (2009).
[CrossRef]

S. Sree Harsha, N. Laman, and D. Grischkowsky, Appl. Phys. Lett. 94, 091 (2009).

2004 (1)

K. Wang and D. M. Mittleman, Nature 432, 376 (2004).
[CrossRef]

Bastian, M.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, Polym. Test. 28, 30 (2009).
[CrossRef]

Bock, W. J.

Chan, H. P.

Chinifooroshan, Y.

Chow, Y. T.

Chung, P. S.

Cundiff, S. T.

Dupuis, A.

Gerhard, M.

Grischkowsky, D.

S. Sree Harsha, N. Laman, and D. Grischkowsky, Appl. Phys. Lett. 94, 091 (2009).

Guofeng, Y.

Hasek, T.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, Polym. Test. 28, 30 (2009).
[CrossRef]

Hochrein, T.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, Polym. Test. 28, 30 (2009).
[CrossRef]

Imhof, C.

Jeon, T.

Kee, C.

Kim, D.

Koch, M.

B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, Opt. Express 19, 24884 (2011).
[CrossRef]

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, J. Inf. Millim. Terahertz. Waves 31, 1312 (2010).
[CrossRef]

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, Polym. Test. 28, 30 (2009).
[CrossRef]

Kretschmer, K.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, Polym. Test. 28, 30 (2009).
[CrossRef]

Krumbholz, N.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, Polym. Test. 28, 30 (2009).
[CrossRef]

Laman, N.

S. Sree Harsha, N. Laman, and D. Grischkowsky, Appl. Phys. Lett. 94, 091 (2009).

Lee, E.

Luk, K. M.

Markov, A.

Mazhorova, A.

Mikulics, M.

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, J. Inf. Millim. Terahertz. Waves 31, 1312 (2010).
[CrossRef]

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, Polym. Test. 28, 30 (2009).
[CrossRef]

Mittleman, D. M.

K. Wang and D. M. Mittleman, Nature 432, 376 (2004).
[CrossRef]

D. M. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).

Park, G.

Reekie, L.

Rozé, M.

Scheller, M.

Scherger, B.

B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, Opt. Express 19, 24884 (2011).
[CrossRef]

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, J. Inf. Millim. Terahertz. Waves 31, 1312 (2010).
[CrossRef]

Shakfa, M. K.

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, J. Inf. Millim. Terahertz. Waves 31, 1312 (2010).
[CrossRef]

Skorobogatiy, M.

So, J.

Sree Harsha, S.

S. Sree Harsha, N. Laman, and D. Grischkowsky, Appl. Phys. Lett. 94, 091 (2009).

Tripathi, S. M.

Ung, B.

Vieweg, N.

B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, Opt. Express 19, 24884 (2011).
[CrossRef]

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, J. Inf. Millim. Terahertz. Waves 31, 1312 (2010).
[CrossRef]

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, Polym. Test. 28, 30 (2009).
[CrossRef]

Wang, K.

K. Wang and D. M. Mittleman, Nature 432, 376 (2004).
[CrossRef]

Zengerle, R.

Zhou, S. F.

Appl. Phys. Lett. (1)

S. Sree Harsha, N. Laman, and D. Grischkowsky, Appl. Phys. Lett. 94, 091 (2009).

J. Inf. Millim. Terahertz. Waves (1)

N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, J. Inf. Millim. Terahertz. Waves 31, 1312 (2010).
[CrossRef]

Nature (1)

K. Wang and D. M. Mittleman, Nature 432, 376 (2004).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Polym. Test. (1)

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, Polym. Test. 28, 30 (2009).
[CrossRef]

Other (1)

D. M. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic of a THz waveguide Bragg grating. (b) Approximate band diagram of the fundamental mode of a TWBG. I, II, III, and IV define four different points on the TWBG band diagram. Modal field distributions at these points are shown in Fig. 2.

Fig. 2.
Fig. 2.

Longitudinal flux distribution for the fundamental plasmonic mode of a TWBG at various operation frequencies. Arrows show the direction of the corresponding electric fields.

Fig. 3.
Fig. 3.

Comparison of (a) absorption losses and (b) excitation efficiencies of the fundamental mode of a TWBG and the fundamental mode of a two-wire waveguide.

Fig. 4.
Fig. 4.

(a) RI profile of the paper grating along the z direction. (b) and (c) Microscopy photos of paper gratings with different periods. (c) Side view of the paper grating inserted between the two copper wires.

Fig. 5.
Fig. 5.

Experimentally measured electric field traces.

Fig. 6.
Fig. 6.

Transmission spectra for (top) a two-wire waveguide, (middle) a two-wire waveguide with a paper grating with 226 μm grating pitch. (bottom) Normalized paper grating spectrum for insertion loss calculation.

Fig. 7.
Fig. 7.

Normalized transmission spectrum of a TWBG with grating pitch of 385 μm.

Metrics