Abstract

A strip/slot hybrid arsenic tri-sulfide waveguide with a horizontal silicon dioxide slot is proposed. The waveguide exhibits an ultra-flat and low dispersion profile with four zero-dispersion wavelengths. Tuning structural parameters of the waveguide causes tailoring the dispersion. There is only a low dispersion of approximately ±3ps/(nm·km) over a 1035 nm bandwidth. It is shown that the waveguide has less sensitivity to the variations of the structural parameters and fabrication errors compared to silicon waveguides. Moreover, nonlinear coefficient, figure of merit, third-order dispersion and phase-matching condition in four-wave mixing are studied. This waveguide has a great potential for nonlinear applications in a wide range of wavelengths.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2010).
  2. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, Opt. Express 20, 1685 (2012).
    [CrossRef]
  3. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agrawal, L. C. Kimerling, J. Michel, and A. E. Willner, IEEE J. Sel. Top. Quantum Electron. 18, 1799 (2012).
    [CrossRef]
  4. F. D. Leonardis and V. M. N. Passaro, Adv. Optoelectron. 2011, 751498 (2011).
    [CrossRef]
  5. F. De Leonardis and V. M. N. Passaro, J. Lightwave Technol. 29, 3523 (2011).
    [CrossRef]
  6. S. Gao, Z. Li, E. Tien, S. He, and O. Boyraz, J. Lightwave Technol. 28, 3079 (2010).
  7. Q. Liu, S. Gao, Z. Li, Y. Xie, and S. He, Appl. Opt. 50, 1260 (2011).
    [CrossRef]
  8. L. Zhang, Y. Yue, Y. Xiao-Li, J. Wang, R. G. Beausoleil, and A. E. Willner, Opt. Express 18, 13187 (2010).
    [CrossRef]
  9. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, Opt. Express 18, 20529 (2010).
    [CrossRef]
  10. S. Mas, J. Caraquitena, J. V. Galan, P. Sanchis, and J. Marti, Opt. Express 18, 20839 (2010).
    [CrossRef]
  11. M. Zhu, H. Liu, X. Li, N. Huang, Q. Sun, J. Wen, and Z. Wang, Opt. Express 20, 15899 (2012).
    [CrossRef]
  12. Y. Huang, P. P. Shum, F. Luan, and M. Tang, IEEE J. Sel. Top. Quantum Electron. 18, 646 (2012).
    [CrossRef]
  13. Y. Huang, P. P. Shum, F. Luan, and M. Tang, in 16th Opto-Electronics and Communications Conference (OECC 2011), Kaohsiung, Taiwan, July4–8, 2011.
  14. M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, J. Appl. Phys. 77, 5518 (1995).
    [CrossRef]
  15. A. D. Bristow, N. Rotenberg, and H. M. Driel, J. Appl. Phys. 90, 191104 (2007).
  16. M. R. E. Lamont, B. Luther-Davies, D. Choi, S. Madden, and B. J. Eggleton, Opt. Express 16, 14938 (2008).
    [CrossRef]
  17. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, Opt. Lett. 29, 1209 (2004).
    [CrossRef]
  18. W. S. Rodney, I. H. Malitson, and T. A. King, J. Opt. Soc. Am. 48, 633 (1958).
  19. M. J. Weber, Handbook of Optical Material (CRC Press, 2002).
  20. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  21. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, Opt. Express 15, 12949 (2007).
    [CrossRef]

2012

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, Opt. Express 20, 1685 (2012).
[CrossRef]

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agrawal, L. C. Kimerling, J. Michel, and A. E. Willner, IEEE J. Sel. Top. Quantum Electron. 18, 1799 (2012).
[CrossRef]

M. Zhu, H. Liu, X. Li, N. Huang, Q. Sun, J. Wen, and Z. Wang, Opt. Express 20, 15899 (2012).
[CrossRef]

Y. Huang, P. P. Shum, F. Luan, and M. Tang, IEEE J. Sel. Top. Quantum Electron. 18, 646 (2012).
[CrossRef]

2011

2010

2008

2007

A. D. Bristow, N. Rotenberg, and H. M. Driel, J. Appl. Phys. 90, 191104 (2007).

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, Opt. Express 15, 12949 (2007).
[CrossRef]

2004

1995

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

1958

Agrawal, A.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agrawal, L. C. Kimerling, J. Michel, and A. E. Willner, IEEE J. Sel. Top. Quantum Electron. 18, 1799 (2012).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Almeida, V. R.

Asobe, M.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

Barrios, C. A.

Beausoleil, R. G.

Boyraz, O.

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. Driel, J. Appl. Phys. 90, 191104 (2007).

Caraquitena, J.

Choi, D.

Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. Driel, J. Appl. Phys. 90, 191104 (2007).

Eggleton, B. J.

Foster, M. A.

Gaeta, A. L.

Galan, J. V.

Gao, S.

He, S.

Huang, N.

Huang, Y.

Y. Huang, P. P. Shum, F. Luan, and M. Tang, IEEE J. Sel. Top. Quantum Electron. 18, 646 (2012).
[CrossRef]

Y. Huang, P. P. Shum, F. Luan, and M. Tang, in 16th Opto-Electronics and Communications Conference (OECC 2011), Kaohsiung, Taiwan, July4–8, 2011.

Itoh, H.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

Kaino, T.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

Kanamori, T.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

Kimerling, L. C.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agrawal, L. C. Kimerling, J. Michel, and A. E. Willner, IEEE J. Sel. Top. Quantum Electron. 18, 1799 (2012).
[CrossRef]

King, T. A.

Lamont, M. R. E.

Leonardis, F. D.

F. D. Leonardis and V. M. N. Passaro, Adv. Optoelectron. 2011, 751498 (2011).
[CrossRef]

Leonardis, F. De

Li, X.

Li, Z.

Lin, Q.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agrawal, L. C. Kimerling, J. Michel, and A. E. Willner, IEEE J. Sel. Top. Quantum Electron. 18, 1799 (2012).
[CrossRef]

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, Opt. Express 20, 1685 (2012).
[CrossRef]

Lipson, M.

Liu, H.

Liu, Q.

Lockwood, D. J.

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2010).

Luan, F.

Y. Huang, P. P. Shum, F. Luan, and M. Tang, IEEE J. Sel. Top. Quantum Electron. 18, 646 (2012).
[CrossRef]

Y. Huang, P. P. Shum, F. Luan, and M. Tang, in 16th Opto-Electronics and Communications Conference (OECC 2011), Kaohsiung, Taiwan, July4–8, 2011.

Luther-Davies, B.

Madden, S.

Malitson, I. H.

Marti, J.

Mas, S.

Michel, J.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agrawal, L. C. Kimerling, J. Michel, and A. E. Willner, IEEE J. Sel. Top. Quantum Electron. 18, 1799 (2012).
[CrossRef]

Naganuma, K.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

Passaro, V. M. N.

F. De Leonardis and V. M. N. Passaro, J. Lightwave Technol. 29, 3523 (2011).
[CrossRef]

F. D. Leonardis and V. M. N. Passaro, Adv. Optoelectron. 2011, 751498 (2011).
[CrossRef]

Pavesi, L.

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2010).

Rodney, W. S.

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. Driel, J. Appl. Phys. 90, 191104 (2007).

Salem, R.

Sanchis, P.

Shum, P. P.

Y. Huang, P. P. Shum, F. Luan, and M. Tang, IEEE J. Sel. Top. Quantum Electron. 18, 646 (2012).
[CrossRef]

Y. Huang, P. P. Shum, F. Luan, and M. Tang, in 16th Opto-Electronics and Communications Conference (OECC 2011), Kaohsiung, Taiwan, July4–8, 2011.

Sun, Q.

Tang, M.

Y. Huang, P. P. Shum, F. Luan, and M. Tang, IEEE J. Sel. Top. Quantum Electron. 18, 646 (2012).
[CrossRef]

Y. Huang, P. P. Shum, F. Luan, and M. Tang, in 16th Opto-Electronics and Communications Conference (OECC 2011), Kaohsiung, Taiwan, July4–8, 2011.

Tien, E.

Turner, A. C.

Wang, J.

Wang, Z.

Weber, M. J.

M. J. Weber, Handbook of Optical Material (CRC Press, 2002).

Wen, J.

Willner, A. E.

Xiao-Li, Y.

Xie, Y.

Xu, Q. F.

Yan, Y.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agrawal, L. C. Kimerling, J. Michel, and A. E. Willner, IEEE J. Sel. Top. Quantum Electron. 18, 1799 (2012).
[CrossRef]

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, Opt. Express 20, 1685 (2012).
[CrossRef]

Yue, Y.

Zhang, L.

Zhu, M.

Adv. Optoelectron.

F. D. Leonardis and V. M. N. Passaro, Adv. Optoelectron. 2011, 751498 (2011).
[CrossRef]

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

Y. Huang, P. P. Shum, F. Luan, and M. Tang, IEEE J. Sel. Top. Quantum Electron. 18, 646 (2012).
[CrossRef]

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agrawal, L. C. Kimerling, J. Michel, and A. E. Willner, IEEE J. Sel. Top. Quantum Electron. 18, 1799 (2012).
[CrossRef]

J. Appl. Phys.

M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, and T. Kaino, J. Appl. Phys. 77, 5518 (1995).
[CrossRef]

A. D. Bristow, N. Rotenberg, and H. M. Driel, J. Appl. Phys. 90, 191104 (2007).

J. Lightwave Technol.

J. Opt. Soc. Am.

Opt. Express

Opt. Lett.

Other

M. J. Weber, Handbook of Optical Material (CRC Press, 2002).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Y. Huang, P. P. Shum, F. Luan, and M. Tang, in 16th Opto-Electronics and Communications Conference (OECC 2011), Kaohsiung, Taiwan, July4–8, 2011.

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Structure of strip/slot hybrid As2S3 waveguide with a SiO2 slot.

Fig. 2.
Fig. 2.

Dispersion profile of the optimum waveguide (W=1390nm, HL=729nm, HS=120nm, HH=300nm, shown in Fig. 1) with four ZDWs. Dispersion varies in the range of ±3ps/(nm·km) over a 1035 nm bandwidth from 1685 to 2720 nm.

Fig. 3.
Fig. 3.

TOD (β3) of the optimum waveguide (W=1390nm, HL=729nm, HS=120nm, HH=300nm) versus wavelength.

Fig. 4.
Fig. 4.

Effective area and nonlinear parameter of the optimum waveguide versus wavelength.

Fig. 5.
Fig. 5.

Mode profile for different wavelengths (1600, 2000, 2400, and 2800 nm). Waveguide dimensions are W=1390nm, HL=729nm, HS=120nm, and HH=300nm.

Fig. 6.
Fig. 6.

Dispersion profile for different waveguide widths.

Fig. 7.
Fig. 7.

Dispersion profile for different waveguide lower As2S3 heights.

Fig. 8.
Fig. 8.

Dispersion profile for different waveguide upper As2S3 heights.

Fig. 9.
Fig. 9.

Dispersion profile for different waveguide slot heights.

Fig. 10.
Fig. 10.

Linear phase mismatch for different pump wavelengths.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

D=(λ/c)·(2neff/λ2),
Aeff=(+|F(x,y)|2dxdy)2+|F(x,y)|4dxdy,
γre=2πλ+n2(x,y)|F(x,y)|4dxdy(+|F(x,y)|2dxdy)2,
γre4πγim,
Δβ=2γrePpump+Δβlinear,
Δβlinear=β2(ωp)Ω2+112β4(ωp)Ω4.

Metrics