Abstract

This Letter proposes a confined laser swelling method to fabricate large curvature microlens arrays. Unlike the polymers in conventional free laser swelling, the swelling polymer, which is methyl red-doped polymethyl methacrylate here, is confined between walls formed by a substrate and a flexible cover layer. Because swelling occurs in an enclosed space, decomposed segments remain in the matrix, resulting in a large hump at the side of the flexible cover layer. The results show that these humps are tens of times higher than those acquired by conventional methods and this method has potential for high efficiency large curvature microlens fabrication.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Jung and K. Jeong, Appl. Phys. Lett. 101, 203102 (2012).
    [CrossRef]
  2. U. Ruiz, C. Provenzano, P. Pagliusi, and G. Cipparrone, Opt. Lett. 37, 4958 (2012).
    [CrossRef]
  3. L. Lin, X. Goh, L. McGuinness, and A. Roberts, Nano Lett. 10, 1936 (2010).
    [CrossRef]
  4. S. Chang, J. Yoon, H. Kim, J. Kim, B. Lee, and D. Shin, Opt. lett. 31, 3016 (2006).
    [CrossRef]
  5. K. Naessens, H. Ottevaere, R. Baets, P. V. Daele, and H. Thienpont, Appl. Opt. 42, 6349 (2003).
    [CrossRef]
  6. H. Dai, Y. Liu, X. Sun, and D. Luo, Opt. Express 17, 4317 (2009).
    [CrossRef]
  7. X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, Adv. Mater. 24, OP165 (2012).
    [CrossRef]
  8. X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, Opt. Lett. 36, 4083 (2011).
    [CrossRef]
  9. Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
    [CrossRef]
  10. W. Wang, X. Mei, and G. Jiang, Int. J. Adv. Manuf. Technol. 41, 504 (2009).
  11. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Appl. Phys. A 97, 751 (2009).
    [CrossRef]
  12. T. Meunier, A. B. Villafranca, R. Bhardwaj, and A. Weck, Opt. Lett. 37, 4266 (2012).
    [CrossRef]
  13. Y. Zhang, Q. Chen, H. Xia, and H. Sun, Nano Today 5, 435 (2010).
    [CrossRef]
  14. F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
    [CrossRef]
  15. E. McLeod and C. Arnold, Nat. Nanotechnol. 3, 413 (2008).
    [CrossRef]
  16. M. Himmelbauer, E. Arenholz, D. Biiuerle, and K. Schilcher, Appl. Phys. A 63, 337 (1996).
    [CrossRef]
  17. F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, Appl. Phys. A 68, 709 (1999).
    [CrossRef]
  18. A. Yu. Malyshev, N. A. Agareva, O. A. Mal’shakova, and N. M. Bityurin, J. Opt. Technol. 74, 641 (2007).
    [CrossRef]
  19. U. Siemann, Prog. Colloid Polym. Sci. 130, 1 (2005).
  20. A. Schleunitz, C. Spreu, T. Mäkelä, T. Haatainen, A. Klukowska, and H. Schift, Microelectron. Eng. 88, 2113 (2011).
    [CrossRef]
  21. W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, Appl. Surf. Sci. 255, 2303 (2008).
    [CrossRef]
  22. T. Meunier, Ana B. Villafranca, R. Bhardwaj, and A. Weck, Opt. Lett. 37, 3168 (2012).
    [CrossRef]

2012 (5)

2011 (2)

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, Opt. Lett. 36, 4083 (2011).
[CrossRef]

A. Schleunitz, C. Spreu, T. Mäkelä, T. Haatainen, A. Klukowska, and H. Schift, Microelectron. Eng. 88, 2113 (2011).
[CrossRef]

2010 (3)

L. Lin, X. Goh, L. McGuinness, and A. Roberts, Nano Lett. 10, 1936 (2010).
[CrossRef]

Y. Zhang, Q. Chen, H. Xia, and H. Sun, Nano Today 5, 435 (2010).
[CrossRef]

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

2009 (3)

W. Wang, X. Mei, and G. Jiang, Int. J. Adv. Manuf. Technol. 41, 504 (2009).

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Appl. Phys. A 97, 751 (2009).
[CrossRef]

H. Dai, Y. Liu, X. Sun, and D. Luo, Opt. Express 17, 4317 (2009).
[CrossRef]

2008 (3)

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, Appl. Surf. Sci. 255, 2303 (2008).
[CrossRef]

E. McLeod and C. Arnold, Nat. Nanotechnol. 3, 413 (2008).
[CrossRef]

Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

U. Siemann, Prog. Colloid Polym. Sci. 130, 1 (2005).

2003 (1)

1999 (1)

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, Appl. Phys. A 68, 709 (1999).
[CrossRef]

1996 (1)

M. Himmelbauer, E. Arenholz, D. Biiuerle, and K. Schilcher, Appl. Phys. A 63, 337 (1996).
[CrossRef]

Agareva, N. A.

Arenholz, E.

M. Himmelbauer, E. Arenholz, D. Biiuerle, and K. Schilcher, Appl. Phys. A 63, 337 (1996).
[CrossRef]

Arnold, C.

E. McLeod and C. Arnold, Nat. Nanotechnol. 3, 413 (2008).
[CrossRef]

Baets, R.

Beinhorn, F.

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, Appl. Phys. A 68, 709 (1999).
[CrossRef]

Bhardwaj, R.

Biiuerle, D.

M. Himmelbauer, E. Arenholz, D. Biiuerle, and K. Schilcher, Appl. Phys. A 63, 337 (1996).
[CrossRef]

Bityurin, N. M.

Chai, Y. H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Appl. Phys. A 97, 751 (2009).
[CrossRef]

Chang, S.

Chen, Q.

Y. Zhang, Q. Chen, H. Xia, and H. Sun, Nano Today 5, 435 (2010).
[CrossRef]

Chen, S. J.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Appl. Phys. A 97, 751 (2009).
[CrossRef]

Cheng, T.

Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Cheng, Y.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

Chin, L.

Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Cipparrone, G.

Daele, P. V.

Dai, H.

Ding, Y.

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, Adv. Mater. 24, OP165 (2012).
[CrossRef]

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, Opt. Lett. 36, 4083 (2011).
[CrossRef]

Goh, X.

L. Lin, X. Goh, L. McGuinness, and A. Roberts, Nano Lett. 10, 1936 (2010).
[CrossRef]

Haatainen, T.

A. Schleunitz, C. Spreu, T. Mäkelä, T. Haatainen, A. Klukowska, and H. Schift, Microelectron. Eng. 88, 2113 (2011).
[CrossRef]

He, F.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

Himmelbauer, M.

M. Himmelbauer, E. Arenholz, D. Biiuerle, and K. Schilcher, Appl. Phys. A 63, 337 (1996).
[CrossRef]

Huang, H.

Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Ihlemann, J.

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, Appl. Phys. A 68, 709 (1999).
[CrossRef]

Jeong, K.

H. Jung and K. Jeong, Appl. Phys. Lett. 101, 203102 (2012).
[CrossRef]

Jiang, G.

W. Wang, X. Mei, and G. Jiang, Int. J. Adv. Manuf. Technol. 41, 504 (2009).

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, Appl. Surf. Sci. 255, 2303 (2008).
[CrossRef]

Jiang, L.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Appl. Phys. A 97, 751 (2009).
[CrossRef]

Jung, H.

H. Jung and K. Jeong, Appl. Phys. Lett. 101, 203102 (2012).
[CrossRef]

Kim, H.

Kim, J.

Klukowska, A.

A. Schleunitz, C. Spreu, T. Mäkelä, T. Haatainen, A. Klukowska, and H. Schift, Microelectron. Eng. 88, 2113 (2011).
[CrossRef]

Lee, B.

Lei, S.

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, Appl. Surf. Sci. 255, 2303 (2008).
[CrossRef]

Li, X.

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, Adv. Mater. 24, OP165 (2012).
[CrossRef]

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, Opt. Lett. 36, 4083 (2011).
[CrossRef]

Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Lin, C. H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Appl. Phys. A 97, 751 (2009).
[CrossRef]

Lin, L.

L. Lin, X. Goh, L. McGuinness, and A. Roberts, Nano Lett. 10, 1936 (2010).
[CrossRef]

Liu, A.

Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Liu, H.

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, Adv. Mater. 24, OP165 (2012).
[CrossRef]

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, Opt. Lett. 36, 4083 (2011).
[CrossRef]

Liu, Y.

Luo, D.

Luther, K.

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, Appl. Phys. A 68, 709 (1999).
[CrossRef]

Mäkelä, T.

A. Schleunitz, C. Spreu, T. Mäkelä, T. Haatainen, A. Klukowska, and H. Schift, Microelectron. Eng. 88, 2113 (2011).
[CrossRef]

Mal’shakova, O. A.

Malyshev, A. Yu.

McGuinness, L.

L. Lin, X. Goh, L. McGuinness, and A. Roberts, Nano Lett. 10, 1936 (2010).
[CrossRef]

McLeod, E.

E. McLeod and C. Arnold, Nat. Nanotechnol. 3, 413 (2008).
[CrossRef]

Mei, X.

W. Wang, X. Mei, and G. Jiang, Int. J. Adv. Manuf. Technol. 41, 504 (2009).

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, Appl. Surf. Sci. 255, 2303 (2008).
[CrossRef]

Meunier, T.

Midorikawa, K.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

Naessens, K.

Ottevaere, H.

Pagliusi, P.

Provenzano, C.

Qiao, L.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

Roberts, A.

L. Lin, X. Goh, L. McGuinness, and A. Roberts, Nano Lett. 10, 1936 (2010).
[CrossRef]

Ruiz, U.

Schift, H.

A. Schleunitz, C. Spreu, T. Mäkelä, T. Haatainen, A. Klukowska, and H. Schift, Microelectron. Eng. 88, 2113 (2011).
[CrossRef]

Schilcher, K.

M. Himmelbauer, E. Arenholz, D. Biiuerle, and K. Schilcher, Appl. Phys. A 63, 337 (1996).
[CrossRef]

Schleunitz, A.

A. Schleunitz, C. Spreu, T. Mäkelä, T. Haatainen, A. Klukowska, and H. Schift, Microelectron. Eng. 88, 2113 (2011).
[CrossRef]

Seow, Y.

Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Shao, J.

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, Adv. Mater. 24, OP165 (2012).
[CrossRef]

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, Opt. Lett. 36, 4083 (2011).
[CrossRef]

Shin, D.

Siemann, U.

U. Siemann, Prog. Colloid Polym. Sci. 130, 1 (2005).

Spreu, C.

A. Schleunitz, C. Spreu, T. Mäkelä, T. Haatainen, A. Klukowska, and H. Schift, Microelectron. Eng. 88, 2113 (2011).
[CrossRef]

Sugioka, K.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

Sun, H.

Y. Zhang, Q. Chen, H. Xia, and H. Sun, Nano Today 5, 435 (2010).
[CrossRef]

Sun, X.

Thienpont, H.

Tian, H.

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, Adv. Mater. 24, OP165 (2012).
[CrossRef]

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, Opt. Lett. 36, 4083 (2011).
[CrossRef]

Troe, J.

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, Appl. Phys. A 68, 709 (1999).
[CrossRef]

Tsai, H. L.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Appl. Phys. A 97, 751 (2009).
[CrossRef]

Villafranca, A. B.

Villafranca, Ana B.

Wang, C.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

Wang, W.

W. Wang, X. Mei, and G. Jiang, Int. J. Adv. Manuf. Technol. 41, 504 (2009).

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, Appl. Surf. Sci. 255, 2303 (2008).
[CrossRef]

Weck, A.

Wu, J.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

Xia, H.

Y. Zhang, Q. Chen, H. Xia, and H. Sun, Nano Today 5, 435 (2010).
[CrossRef]

Xiao, H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Appl. Phys. A 97, 751 (2009).
[CrossRef]

Xu, Z.

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

Yang, C.

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, Appl. Surf. Sci. 255, 2303 (2008).
[CrossRef]

Yoon, J.

Zhang, Y.

Y. Zhang, Q. Chen, H. Xia, and H. Sun, Nano Today 5, 435 (2010).
[CrossRef]

Zhou, X.

Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Adv. Mater. (1)

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, Adv. Mater. 24, OP165 (2012).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (3)

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Appl. Phys. A 97, 751 (2009).
[CrossRef]

M. Himmelbauer, E. Arenholz, D. Biiuerle, and K. Schilcher, Appl. Phys. A 63, 337 (1996).
[CrossRef]

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, Appl. Phys. A 68, 709 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

F. He, Y. Cheng, L. Qiao, C. Wang, Z. Xu, K. Sugioka, K. Midorikawa, and J. Wu, Appl. Phys. Lett. 96, 041108 (2010).
[CrossRef]

Y. Seow, A. Liu, L. Chin, X. Li, H. Huang, T. Cheng, and X. Zhou, Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

H. Jung and K. Jeong, Appl. Phys. Lett. 101, 203102 (2012).
[CrossRef]

Appl. Surf. Sci. (1)

W. Wang, X. Mei, G. Jiang, S. Lei, and C. Yang, Appl. Surf. Sci. 255, 2303 (2008).
[CrossRef]

Int. J. Adv. Manuf. Technol. (1)

W. Wang, X. Mei, and G. Jiang, Int. J. Adv. Manuf. Technol. 41, 504 (2009).

J. Opt. Technol. (1)

Microelectron. Eng. (1)

A. Schleunitz, C. Spreu, T. Mäkelä, T. Haatainen, A. Klukowska, and H. Schift, Microelectron. Eng. 88, 2113 (2011).
[CrossRef]

Nano Lett. (1)

L. Lin, X. Goh, L. McGuinness, and A. Roberts, Nano Lett. 10, 1936 (2010).
[CrossRef]

Nano Today (1)

Y. Zhang, Q. Chen, H. Xia, and H. Sun, Nano Today 5, 435 (2010).
[CrossRef]

Nat. Nanotechnol. (1)

E. McLeod and C. Arnold, Nat. Nanotechnol. 3, 413 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Prog. Colloid Polym. Sci. (1)

U. Siemann, Prog. Colloid Polym. Sci. 130, 1 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagrams of the fabrication processes. (a) The swelling polymer and flexible cover layer are prepared successively on the substrate. (b) A laser beam with the appropriate fluence is used to irradiate the swelling polymer. (c) Formation of a large hump occurs at the side of the flexible cover layer after stress relaxation. (d) A microlens array is fabricated using a scanning process.

Fig. 2.
Fig. 2.

Absorption spectra of MR-doped PMMA and UV curable resist (Ormostamp). The MR-doped PMMA and UV-cured resist films are 65 and 5 μm thick, respectively.

Fig. 3.
Fig. 3.

(a) Scanning electron microscope (SEM) image of microlens. (b) LSCM measured 3D topography of microlens array. (c) Cross-section of a measured microlens and its spherical fitting. (d) SEM image of the porosity in the microlens.

Fig. 4.
Fig. 4.

Effects of pulse energy on the microlens shape.

Fig. 5.
Fig. 5.

Testing of imaging properties of the microlenses. (a) Schematic diagram of the imaging system. (b) Inverted images of the letter “F” array.

Metrics