Abstract

We demonstrate a fiber in-line Mach–Zehnder interferometer based on dual internal mirrors formed by a hollow sphere pair and fabricated by femtosecond laser micromachining together with the fusion splicing technique. The hollow sphere surface adjacent to the fiber core can reflect part of the incident light beam to the air–cladding interface, where the light beam is reflected again before returning to the fiber core by another hollow sphere surface and recombining with the light beam remaining in the fiber core. Such an interferometer is miniature and robust, and is sensitive to environmental variations and allows simultaneous surrounding refractive index, temperature, and curvature measurement.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Yao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, Opt. Express 15, 14123 (2007).
    [CrossRef]
  2. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, Opt. Lett. 34, 2441 (2009).
    [CrossRef]
  3. L. B. Yuan, J. Yang, Z. Liu, and J. Sun, Opt. Lett. 31, 2692 (2006).
    [CrossRef]
  4. C. R. Liao, D. N. Wang, M. Wang, and M. Yang, IEEE Photon. Technol. Lett. 24, 2060 (2012).
    [CrossRef]
  5. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, Opt. Lett. 29, 346 (2004).
    [CrossRef]
  6. J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, IEEE Photon. Technol. Lett. 17, 1247 (2005).
    [CrossRef]
  7. J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, IEEE Photon. Technol. Lett. 18, 1258 (2006).
    [CrossRef]
  8. P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).
    [CrossRef]
  9. Z. Tian, S. S.-H. Yam, and H. Loock, IEEE Photon. Technol. Lett. 20, 1387 (2008).
    [CrossRef]
  10. Y. Jung, S. Lee, B. H. Lee, and K. Oh, Opt. Lett. 33, 2934 (2008).
    [CrossRef]
  11. P. L. Swart, Meas. Sci. Technol. 15, 1576 (2004).
    [CrossRef]
  12. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, J. Opt. Soc. Am. B 27, 370 (2010).
    [CrossRef]
  13. T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang, Opt. Lett. 37, 5082 (2012).
    [CrossRef]
  14. E. Cibula and D. Donlagic, Opt. Express 18, 12017 (2010).
    [CrossRef]
  15. C. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, Opt. Express 16, 9645 (2008).
    [CrossRef]
  16. N. Liu, Y. Li, Y. Wang, H. Wang, W. Liang, and P. Lu, Opt. Express 19, 13880 (2011).
    [CrossRef]
  17. Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and X. K. Zeng, Opt. Lasers Eng. 41, 233 (2004).
    [CrossRef]

2012

C. R. Liao, D. N. Wang, M. Wang, and M. Yang, IEEE Photon. Technol. Lett. 24, 2060 (2012).
[CrossRef]

T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang, Opt. Lett. 37, 5082 (2012).
[CrossRef]

2011

2010

2009

J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, Opt. Lett. 34, 2441 (2009).
[CrossRef]

P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

2008

2007

2006

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, IEEE Photon. Technol. Lett. 18, 1258 (2006).
[CrossRef]

L. B. Yuan, J. Yang, Z. Liu, and J. Sun, Opt. Lett. 31, 2692 (2006).
[CrossRef]

2005

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, IEEE Photon. Technol. Lett. 17, 1247 (2005).
[CrossRef]

2004

P. L. Swart, Meas. Sci. Technol. 15, 1576 (2004).
[CrossRef]

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and X. K. Zeng, Opt. Lasers Eng. 41, 233 (2004).
[CrossRef]

J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, Opt. Lett. 29, 346 (2004).
[CrossRef]

Albert, J.

Bigot, L.

Bouwmans, G.

Chen, C.

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Cheng, G. H.

Cibula, E.

Coviello, G.

Deng, M.

Ding, J. F.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, IEEE Photon. Technol. Lett. 17, 1247 (2005).
[CrossRef]

Donlagic, D.

Duan, D. W.

Finazzi, V.

He, S. L.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, IEEE Photon. Technol. Lett. 17, 1247 (2005).
[CrossRef]

Hu, T. Y.

Jang, H. S.

Jung, Y.

Kim, J. C.

Laronche, A.

Lee, B. H.

Lee, K. S.

Lee, S.

Li, Y.

Liang, W.

Liao, C. R.

T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang, Opt. Lett. 37, 5082 (2012).
[CrossRef]

C. R. Liao, D. N. Wang, M. Wang, and M. Yang, IEEE Photon. Technol. Lett. 24, 2060 (2012).
[CrossRef]

Lim, J. H.

Liu, N.

Liu, S.

Liu, Z.

Loock, H.

Z. Tian, S. S.-H. Yam, and H. Loock, IEEE Photon. Technol. Lett. 20, 1387 (2008).
[CrossRef]

Lu, P.

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Minkovich, V. P.

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, IEEE Photon. Technol. Lett. 18, 1258 (2006).
[CrossRef]

Monzón-Hernández, D.

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, IEEE Photon. Technol. Lett. 18, 1258 (2006).
[CrossRef]

Oh, K.

Pruneri, V.

Quiquempois, Y.

Ran, Z. L.

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and X. K. Zeng, Opt. Lasers Eng. 41, 233 (2004).
[CrossRef]

Rao, Y. J.

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and X. K. Zeng, Opt. Lasers Eng. 41, 233 (2004).
[CrossRef]

Shao, L. Y.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, IEEE Photon. Technol. Lett. 17, 1247 (2005).
[CrossRef]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Sun, J.

Swart, P. L.

P. L. Swart, Meas. Sci. Technol. 15, 1576 (2004).
[CrossRef]

Tian, Z.

Z. Tian, S. S.-H. Yam, and H. Loock, IEEE Photon. Technol. Lett. 20, 1387 (2008).
[CrossRef]

Villatoro, J.

J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, Opt. Lett. 34, 2441 (2009).
[CrossRef]

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, IEEE Photon. Technol. Lett. 18, 1258 (2006).
[CrossRef]

Wang, D. N.

Wang, H.

Wang, M.

C. R. Liao, D. N. Wang, M. Wang, and M. Yang, IEEE Photon. Technol. Lett. 24, 2060 (2012).
[CrossRef]

Wang, Y.

Wang, Y. P.

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and X. K. Zeng, Opt. Lasers Eng. 41, 233 (2004).
[CrossRef]

Yam, S. S.-H.

Z. Tian, S. S.-H. Yam, and H. Loock, IEEE Photon. Technol. Lett. 20, 1387 (2008).
[CrossRef]

Yan, J. H.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, IEEE Photon. Technol. Lett. 17, 1247 (2005).
[CrossRef]

Yang, J.

Yang, M.

C. R. Liao, D. N. Wang, M. Wang, and M. Yang, IEEE Photon. Technol. Lett. 24, 2060 (2012).
[CrossRef]

Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, J. Opt. Soc. Am. B 27, 370 (2010).
[CrossRef]

Yang, X. C.

Yao, Y. J.

Yuan, L. B.

Zeng, X. K.

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and X. K. Zeng, Opt. Lasers Eng. 41, 233 (2004).
[CrossRef]

Zhang, A. P.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, IEEE Photon. Technol. Lett. 17, 1247 (2005).
[CrossRef]

Zhu, T.

Y. J. Yao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, Opt. Express 15, 14123 (2007).
[CrossRef]

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and X. K. Zeng, Opt. Lasers Eng. 41, 233 (2004).
[CrossRef]

Appl. Phys. Lett.

P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Tian, S. S.-H. Yam, and H. Loock, IEEE Photon. Technol. Lett. 20, 1387 (2008).
[CrossRef]

C. R. Liao, D. N. Wang, M. Wang, and M. Yang, IEEE Photon. Technol. Lett. 24, 2060 (2012).
[CrossRef]

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, IEEE Photon. Technol. Lett. 17, 1247 (2005).
[CrossRef]

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, IEEE Photon. Technol. Lett. 18, 1258 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Meas. Sci. Technol.

P. L. Swart, Meas. Sci. Technol. 15, 1576 (2004).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

Y. P. Wang, Y. J. Rao, Z. L. Ran, T. Zhu, and X. K. Zeng, Opt. Lasers Eng. 41, 233 (2004).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the fiber in-line MZI.

Fig. 2.
Fig. 2.

Microscope image and corresponding spectrum for the hollow sphere pair with separation of (a) 136.6 μm, (b) 161.3 μm, (c) 184.8 μm, (d) 193.8 μm, and (e) 265 μm. (f) FSR versus the separation of the hollow sphere pair. Inset shows the path of the light reflected by the hollow sphere pair.

Fig. 3.
Fig. 3.

Fringe dip wavelength shift with applied axial strain. Inset shows the transmission spectra of the device at different strains.

Fig. 4.
Fig. 4.

Fringe dip wavelength shift with temperature variation. Inset shows the transmission spectra of the device at different temperatures.

Fig. 5.
Fig. 5.

Variation of the output fringe visibility with external RI. Inset shows the transmission spectra of the device at different external RI values.

Fig. 6.
Fig. 6.

Dip wavelength intensity versus curvature. The upper inset shows the fringe dip wavelength versus curvature, and the lower shows the transmission spectra of the device at curvature ratios of 0, 0.8, and 2m1, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I=I1+I2+2I1I2cos(2πΔ(nL)λ),
λdip=2Δ(nL)2m+1.
FSR=λ2Δ(nL).
δλdip=42m+1[(ncl+δn)(z+Δz)(nco+δn)(x+Δx)]42m+1(nclzncox)42m+1(nclΔz+zδnncoΔxxδn)=42m+1[nclΔx(xznconcl)+(zx)δn],
δλdip=42m+1[nclΔx(xznconcl)+(zx)δnT]42m+1(zx)δnT,

Metrics