Abstract

A kinetic model describing the conversion of a photochromic layer under complex illumination conditions is applied to absorbance-modulation optical lithography to determine the influence of the material characteristics on the confinement to subdiffraction dimensions of the transmitted dose. We show that the most important parameters are the intensity ratio between the confining and writing beams, the overall absorption at the writing wavelength, the relative absorption coefficients, and the photoreaction quantum yields at the two wavelengths. As the confining beam ultimately determines the transferred dose pattern, we conclude that the modulation of the writing beam is not strictly necessary to produce subwavelength apertures.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Menon and H. Smith, J. Opt. Soc. Am. A 23, 2290 (2006).
    [CrossRef]
  2. R. Menon, H.-Y. Tsai, and S. Thomas, Phys. Rev. Lett. 98, 043905 (2007).
    [CrossRef]
  3. T. L. Andrew, H.-Y. Tsai, and R. Menon, Science 324, 917 (2009).
    [CrossRef]
  4. M. Warner and R. Blaikie, Phys. Rev. A 80, 033833 (2009).
    [CrossRef]
  5. J. E. Foulkes and R. J. Blaikie, J. Vac. Sci. Technol. A 27, 2941 (2009).
    [CrossRef]
  6. W. J. Tomlinson, Appl. Opt. 11, 823 (1972).
    [CrossRef]
  7. G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, J. Phys. Chem. A 115, 12184 (2011).
    [CrossRef]
  8. M. Irie, Chem. Rev. 100, 1685 (2000).
    [CrossRef]
  9. S. Nakamura, T. Kobayashi, A. Takata, K. Uchida, Y. Asano, A. Murakami, A. Goldberg, D. Guillaumont, S. Yokojima, S. Kobatake, and M. Irie, J. Phys. Org. Chem. 20, 821 (2007).
    [CrossRef]

2011 (1)

G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, J. Phys. Chem. A 115, 12184 (2011).
[CrossRef]

2009 (3)

T. L. Andrew, H.-Y. Tsai, and R. Menon, Science 324, 917 (2009).
[CrossRef]

M. Warner and R. Blaikie, Phys. Rev. A 80, 033833 (2009).
[CrossRef]

J. E. Foulkes and R. J. Blaikie, J. Vac. Sci. Technol. A 27, 2941 (2009).
[CrossRef]

2007 (2)

S. Nakamura, T. Kobayashi, A. Takata, K. Uchida, Y. Asano, A. Murakami, A. Goldberg, D. Guillaumont, S. Yokojima, S. Kobatake, and M. Irie, J. Phys. Org. Chem. 20, 821 (2007).
[CrossRef]

R. Menon, H.-Y. Tsai, and S. Thomas, Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef]

2006 (1)

2000 (1)

M. Irie, Chem. Rev. 100, 1685 (2000).
[CrossRef]

1972 (1)

Andrew, T. L.

T. L. Andrew, H.-Y. Tsai, and R. Menon, Science 324, 917 (2009).
[CrossRef]

Asano, Y.

S. Nakamura, T. Kobayashi, A. Takata, K. Uchida, Y. Asano, A. Murakami, A. Goldberg, D. Guillaumont, S. Yokojima, S. Kobatake, and M. Irie, J. Phys. Org. Chem. 20, 821 (2007).
[CrossRef]

Bertarelli, C.

G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, J. Phys. Chem. A 115, 12184 (2011).
[CrossRef]

Bianco, A.

G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, J. Phys. Chem. A 115, 12184 (2011).
[CrossRef]

Blaikie, R.

M. Warner and R. Blaikie, Phys. Rev. A 80, 033833 (2009).
[CrossRef]

Blaikie, R. J.

J. E. Foulkes and R. J. Blaikie, J. Vac. Sci. Technol. A 27, 2941 (2009).
[CrossRef]

Castagna, R.

G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, J. Phys. Chem. A 115, 12184 (2011).
[CrossRef]

Foulkes, J. E.

J. E. Foulkes and R. J. Blaikie, J. Vac. Sci. Technol. A 27, 2941 (2009).
[CrossRef]

Goldberg, A.

S. Nakamura, T. Kobayashi, A. Takata, K. Uchida, Y. Asano, A. Murakami, A. Goldberg, D. Guillaumont, S. Yokojima, S. Kobatake, and M. Irie, J. Phys. Org. Chem. 20, 821 (2007).
[CrossRef]

Guillaumont, D.

S. Nakamura, T. Kobayashi, A. Takata, K. Uchida, Y. Asano, A. Murakami, A. Goldberg, D. Guillaumont, S. Yokojima, S. Kobatake, and M. Irie, J. Phys. Org. Chem. 20, 821 (2007).
[CrossRef]

Irie, M.

S. Nakamura, T. Kobayashi, A. Takata, K. Uchida, Y. Asano, A. Murakami, A. Goldberg, D. Guillaumont, S. Yokojima, S. Kobatake, and M. Irie, J. Phys. Org. Chem. 20, 821 (2007).
[CrossRef]

M. Irie, Chem. Rev. 100, 1685 (2000).
[CrossRef]

Kobatake, S.

S. Nakamura, T. Kobayashi, A. Takata, K. Uchida, Y. Asano, A. Murakami, A. Goldberg, D. Guillaumont, S. Yokojima, S. Kobatake, and M. Irie, J. Phys. Org. Chem. 20, 821 (2007).
[CrossRef]

Kobayashi, T.

S. Nakamura, T. Kobayashi, A. Takata, K. Uchida, Y. Asano, A. Murakami, A. Goldberg, D. Guillaumont, S. Yokojima, S. Kobatake, and M. Irie, J. Phys. Org. Chem. 20, 821 (2007).
[CrossRef]

Menon, R.

T. L. Andrew, H.-Y. Tsai, and R. Menon, Science 324, 917 (2009).
[CrossRef]

R. Menon, H.-Y. Tsai, and S. Thomas, Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef]

R. Menon and H. Smith, J. Opt. Soc. Am. A 23, 2290 (2006).
[CrossRef]

Murakami, A.

S. Nakamura, T. Kobayashi, A. Takata, K. Uchida, Y. Asano, A. Murakami, A. Goldberg, D. Guillaumont, S. Yokojima, S. Kobatake, and M. Irie, J. Phys. Org. Chem. 20, 821 (2007).
[CrossRef]

Nakamura, S.

S. Nakamura, T. Kobayashi, A. Takata, K. Uchida, Y. Asano, A. Murakami, A. Goldberg, D. Guillaumont, S. Yokojima, S. Kobatake, and M. Irie, J. Phys. Org. Chem. 20, 821 (2007).
[CrossRef]

Pariani, G.

G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, J. Phys. Chem. A 115, 12184 (2011).
[CrossRef]

Smith, H.

Takata, A.

S. Nakamura, T. Kobayashi, A. Takata, K. Uchida, Y. Asano, A. Murakami, A. Goldberg, D. Guillaumont, S. Yokojima, S. Kobatake, and M. Irie, J. Phys. Org. Chem. 20, 821 (2007).
[CrossRef]

Thomas, S.

R. Menon, H.-Y. Tsai, and S. Thomas, Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef]

Tomlinson, W. J.

Tsai, H.-Y.

T. L. Andrew, H.-Y. Tsai, and R. Menon, Science 324, 917 (2009).
[CrossRef]

R. Menon, H.-Y. Tsai, and S. Thomas, Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef]

Uchida, K.

S. Nakamura, T. Kobayashi, A. Takata, K. Uchida, Y. Asano, A. Murakami, A. Goldberg, D. Guillaumont, S. Yokojima, S. Kobatake, and M. Irie, J. Phys. Org. Chem. 20, 821 (2007).
[CrossRef]

Warner, M.

M. Warner and R. Blaikie, Phys. Rev. A 80, 033833 (2009).
[CrossRef]

Yokojima, S.

S. Nakamura, T. Kobayashi, A. Takata, K. Uchida, Y. Asano, A. Murakami, A. Goldberg, D. Guillaumont, S. Yokojima, S. Kobatake, and M. Irie, J. Phys. Org. Chem. 20, 821 (2007).
[CrossRef]

Appl. Opt. (1)

Chem. Rev. (1)

M. Irie, Chem. Rev. 100, 1685 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. A (1)

G. Pariani, A. Bianco, R. Castagna, and C. Bertarelli, J. Phys. Chem. A 115, 12184 (2011).
[CrossRef]

J. Phys. Org. Chem. (1)

S. Nakamura, T. Kobayashi, A. Takata, K. Uchida, Y. Asano, A. Murakami, A. Goldberg, D. Guillaumont, S. Yokojima, S. Kobatake, and M. Irie, J. Phys. Org. Chem. 20, 821 (2007).
[CrossRef]

J. Vac. Sci. Technol. A (1)

J. E. Foulkes and R. J. Blaikie, J. Vac. Sci. Technol. A 27, 2941 (2009).
[CrossRef]

Phys. Rev. A (1)

M. Warner and R. Blaikie, Phys. Rev. A 80, 033833 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

R. Menon, H.-Y. Tsai, and S. Thomas, Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef]

Science (1)

T. L. Andrew, H.-Y. Tsai, and R. Menon, Science 324, 917 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scheme of the AMOL process (top) as described in [3]. Two standing waves that overlap peaks at λ1 with nodes at λ2 simultaneously illuminate a photochromic film atop a photoresist layer. As the intensity of λ2 increases, light at λ1 is spatially confined. (Bottom left) Photochromic reaction and properties of the active layer. (Bottom right) Absorption cross section of the photochromic layer in the two isomeric forms.

Fig. 2.
Fig. 2.

Effect of the intensity ratio between confining and writing beams. (a) Dose profile of the writing beam on the photoresist (the red line marks the photoresist threshold) for a 250 nm thick photochromic layer under intensity ratios, Iλ2/Iλ1, of 1, 10, 100, 1000, and 2000 (Iλ1 is constant); (b) corresponding linewidths in the photoresist as function of the exposure time for the different intensity ratios.

Fig. 3.
Fig. 3.

Effect of the photochromic film thickness. (a) Dose profile of the writing beam on the photoresist (the red line marks the photoresist threshold) for layers of different thicknesses Γ (100, 250, 500, and 1000 nm) at an intensity ratio Iλ2/Iλ1 of 1000; (b) corresponding linewidths in the photoresist as function of the exposure time for layers of different thicknesses (the red line is the envelope).

Fig. 4.
Fig. 4.

Effect of absorption cross sections and quantum yields. (a) Dose profile of the writing beam on the photoresist (the red line marks the photoresist threshold) for a 250 nm thick layer under an intensity ratio Iλ2/Iλ1 of 1000 for different absorption coefficient ratios εBλ1/εAλ1 at the writing wavelength (0, 0.2 0.4, 0.6, and 0.8); (b) dose profile of the writing beam on the photoresist for a 250 nm thick layer under an intensity ratio Iλ2/Iλ1 of 100 for different quantum yield ratios ϕBAλ2/ϕABλ1 (0.025, 0.05, 0.1, 0.2, 0.4, and 1.0).

Fig. 5.
Fig. 5.

Combined impact of all parameters. (a) Linewidth in the photoresist as function of the film thickness Γ for different intensity ratios Iλ2/Iλ1 of 1, 10, 100, 1000, and 2000 between confining and writing beams, in normal conditions of absorption cross sections εBλ1/εAλ1=0.2 and quantum yields ϕBAλ2/ϕABλ1=0.05; (b) linewidth in the photoresist as function of the quantum yield ratio for different absorption coefficient ratios εBλ1/εAλ1 of 0, 0.2, 0.4, 0.6, and 0.8, in conditions of low intensity ratio Iλ2/Iλ1=100 and film thickness Γ=250nm; the open red circles represent the common values between the two plots.

Fig. 6.
Fig. 6.

Effect of the confining beam. (a) Dose profiles of the writing beam on the photoresist for a 250 nm thick layer under uniform λ1 and sinusoidal λ2 illumination, as a function of intensity ratios Iλ2/Iλ1 of 1, 10, 100, 1000, and 2000; (b) linewidth in the photoresist as a function of the absorption coefficient ratio εBλ1/εAλ1 for different intensity ratios Iλ2/Iλ1 of 1, 10, 100, 1000, and 2000 in the case of uniform intensity confining beam λ1 (blue lines, open circles) and sinusoidal intensity confining beam λ1 (red lines, dots).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

dζA(y,z,t)dt=kABλζA(y,z,t)=Iλ(y,z,t)εAλϕABλζA(y,z,t),
Iλ(y,z,t)=I0λ(y)exp[0zEλ(y,z,t)dz],
Eλ(y,z,t)=εAλζA(y,z,t)C+εBλζB(y,z,t)C,
Dλ(y,t)=0tIλ(y,Γ,t)dt.
dζA(z,t)dt=kABλ1ζA(z,t)+kBAλ2ζB(z,t),
CT(λ1)=TBλ1TAλ1,
lnCT(λ1)=εAλ1CΓ(1εBλ1εAλ1).

Metrics