Abstract

We report on a high-power quasi-CW pumped Nd:YAG laser system, producing 130 mJ, 64 ps pulses at 1064 nm wavelength with a repetition rate of 300 Hz. Pulses from a Nd:YVO4 oscillator are first amplified by a regenerative amplifier to the millijoule level and then further amplified in quasi-CW diode-pumped Nd:YAG modules. Pulsed diode pumping enables a high gain at repetition rates of several hundred hertz, while keeping thermal effects manageable. Birefringence compensation and multiple thermal-lensing-compensated relay-imaging stages are used to maintain a top-hat beam profile. After frequency doubling, 75 mJ pulses are obtained at 532 nm. The intensity stability is better than 1.1%, which makes this laser an attractive pump source for a high-repetition-rate optical parametric amplification system.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
    [CrossRef]
  2. S. Witte, R. T. Zinkstok, A. L. Wolf, W. Hogervorst, W. Ubachs, and K. S. E. Eikema, Opt. Express 14, 8168 (2006).
    [CrossRef]
  3. M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Hädrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B. Faatz, A. Tünnermann, J. Rossbach, M. Drescher, and F. Tavella, Opt. Lett. 36, 2456 (2011).
    [CrossRef]
  4. J. Tümmler, R. Jung, H. Stiel, P. V. Nickles, and W. Sandner, Opt. Lett. 34, 1378 (2009).
    [CrossRef]
  5. A. H. Curtis, B. A. Reagan, K. A. Wernsing, F. J. Furch, B. M. Luther, and J. J. Rocca, Opt. Lett. 36, 2164 (2011).
    [CrossRef]
  6. S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, Opt. Express 19, 5357 (2011).
    [CrossRef]
  7. K.-H. Hong, J. T. Gopinath, D. Rand, A. M. Siddiqui, S.-W. Huang, E. Li, B. J. Eggleton, J. D. Hybl, T. Y. Fan, and F. X. Kärtner, Opt. Lett. 35, 1752 (2010).
    [CrossRef]
  8. D. A. Rand, S. E. J. Shaw, J. R. Ochoa, D. J. Ripin, A. Taylor, T. Y. Fan, H. Martin, S. Hawes, J. Zhang, S. Sarkisyan, E. Wilson, and P. Lundquist, Opt. Lett. 36, 340 (2011).
    [CrossRef]
  9. D. E. Miller, L. E. Zapata, D. J. Ripin, and T. Y. Fan, Opt. Lett. 37, 2700 (2012).
    [CrossRef]
  10. F. Tavella, A. Marcinkevicius, and F. Krausz, Opt. Express 14, 12822 (2006).
    [CrossRef]
  11. S. Witte, R. T. Zinkstok, W. Hogervorst, and K. S. E. Eikema, Opt. Express 13, 4903 (2005).
    [CrossRef]
  12. W. Koechner, Solid-State Laser Engineering (Springer Series in Optical Sciences) (Springer, 1999).
  13. Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, Opt. Quantum Electron. 28, 57 (1996).
    [CrossRef]

2012 (1)

2011 (4)

2010 (2)

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

K.-H. Hong, J. T. Gopinath, D. Rand, A. M. Siddiqui, S.-W. Huang, E. Li, B. J. Eggleton, J. D. Hybl, T. Y. Fan, and F. X. Kärtner, Opt. Lett. 35, 1752 (2010).
[CrossRef]

2009 (1)

2006 (2)

2005 (1)

1996 (1)

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, Opt. Quantum Electron. 28, 57 (1996).
[CrossRef]

Ahmad, I.

Arpin, P.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Chen, M.-C.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Curtis, A. H.

Dolkemeyer, J.

Dong, S.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, Opt. Quantum Electron. 28, 57 (1996).
[CrossRef]

Drescher, M.

Duesterer, S.

Eggleton, B. J.

Eikema, K. S. E.

Faatz, B.

Fan, T. Y.

Feldhaus, J.

Furch, F. J.

Gerrity, M.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Gopinath, J. T.

Gottschall, T.

Hädrich, S.

Hawes, S.

Hogervorst, W.

Hong, K.-H.

Huang, S.-W.

Hybl, J. D.

Jung, R.

Kapteyn, H. C.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Karsch, S.

Kärtner, F. X.

Klingebiel, S.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer Series in Optical Sciences) (Springer, 1999).

Krausz, F.

Kugler, N.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, Opt. Quantum Electron. 28, 57 (1996).
[CrossRef]

Li, E.

Limpert, J.

Lü, Q.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, Opt. Quantum Electron. 28, 57 (1996).
[CrossRef]

Lundquist, P.

Luther, B. M.

Major, Z.

Mans, T.

Marcinkevicius, A.

Martin, H.

Miller, D. E.

Müller, N.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, Opt. Quantum Electron. 28, 57 (1996).
[CrossRef]

Murnane, M. M.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Nickles, P. V.

Ochoa, J. R.

Popmintchev, D.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Popmintchev, T.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Rand, D.

Rand, D. A.

Reagan, B. A.

Riedel, R.

Ripin, D. J.

Rocca, J. J.

Rossbach, J.

Russbueldt, P.

Sandner, W.

Sarkisyan, S.

Schlarb, H.

Schnitzler, C.

Schulz, M.

Seaberg, M.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Seise, E.

Shaw, S. E. J.

Siddiqui, A. M.

Skrobol, C.

Stiel, H.

Tavella, F.

Taylor, A.

Trushin, S. A.

Tümmler, J.

Tünnermann, A.

Ubachs, W.

Wandt, C.

Weber, H.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, Opt. Quantum Electron. 28, 57 (1996).
[CrossRef]

Wernsing, K. A.

Willner, A.

Wilson, E.

Witte, S.

Wittrock, U.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, Opt. Quantum Electron. 28, 57 (1996).
[CrossRef]

Wolf, A. L.

Zapata, L. E.

Zhang, B.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Zhang, J.

Zinkstok, R. T.

Opt. Express (4)

Opt. Lett. (6)

Opt. Quantum Electron. (1)

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, Opt. Quantum Electron. 28, 57 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Other (1)

W. Koechner, Solid-State Laser Engineering (Springer Series in Optical Sciences) (Springer, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the developed Nd:YAG regenerative amplifier and quasi-CW-pumped postamplifier system. TFP, thin-film polarizer; λ/2, half-wave plate; λ/4, quarter-wave plate; FR, Faraday rotator; VT, vacuum tube.

Fig. 2.
Fig. 2.

Output pulse energy at 532 nm after SHG plotted against the 1064 nm input pulse energy.

Fig. 3.
Fig. 3.

Measured autocorrelation trace and Gaussian fit. The fit has a FWHM of 90 ps, which indicates a pulse length of 64 ps for a Gaussian temporal profile.

Fig. 4.
Fig. 4.

Transverse beam profiles of the amplified pulses at 1064 nm (left) and after frequency doubling to 532 nm (right), measured at the position of the BBO crystal via relay imaging. Single-line cross sections at the dashed lines are included. Note that the diagonal fringes in the 1064 nm image are an artefact, due to interferences in the CCD camera. Some spots are visible in the 532 nm beam, which are caused by dust particles on neutral gray filters and the CCD itself.

Metrics