Abstract

We demonstrate compact silicon-on-insulator-based arrayed waveguide gratings (AWGs) for (de)multiplexing applications with a large free spectral range (FSR). The large FSR is obtained by reducing the arm aperture pitch without changing the device footprint. We demonstrate 4×100GHz, 8×250GHz, and 12×400GHz AWGs with FSRs of 6.9, 24.8, and 69.8, respectively. We measured an insertion loss from 2.45dB for high to 0.53dB for low-resolution AWGs. The crosstalk varies between 17.12 and 21.37 dB. The bandwidth remains nearly constant, and the nonuniformity between the center wavelength channel and the outer wavelength channel improves with larger FSR values.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 1182 (2001).
  2. C. Dragone, IEEE Photon. Technol. Lett. 3, 812 (1991).
    [CrossRef]
  3. R. Adar, C. Henry, C. Dragone, R. Kistler, and M. Milbrodt, J. Lightwave Technol. 11, 212 (1993).
    [CrossRef]
  4. R. Mestric, H. Bissessur, B. Martin, and A. Pinquier, IEEE Photon. Technol. Lett. 8, 638 (1996).
    [CrossRef]
  5. W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
    [CrossRef]
  6. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, J. Lightwave Technol. 31, 87 (2013).
    [CrossRef]
  7. J. Zou, X. Jiang, X. Xia, T. Lang, and J.-J. He, J. Lightwave Technol. 31, 1935 (2013).
  8. A. Klekamp and R. Munzner, J. Lightwave Technol. 21, 1978 (2003).
    [CrossRef]
  9. S. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, J. Lightwave Technol. 27, 4076 (2009).
    [CrossRef]
  10. F. van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. Krauss, and R. Baets, J. Lightwave Technol. 25, 151 (2007).
    [CrossRef]

2013 (2)

2010 (1)

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[CrossRef]

2009 (1)

2007 (1)

2003 (1)

2001 (1)

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 1182 (2001).

1996 (1)

R. Mestric, H. Bissessur, B. Martin, and A. Pinquier, IEEE Photon. Technol. Lett. 8, 638 (1996).
[CrossRef]

1993 (1)

R. Adar, C. Henry, C. Dragone, R. Kistler, and M. Milbrodt, J. Lightwave Technol. 11, 212 (1993).
[CrossRef]

1991 (1)

C. Dragone, IEEE Photon. Technol. Lett. 3, 812 (1991).
[CrossRef]

Abe, M.

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 1182 (2001).

Adar, R.

R. Adar, C. Henry, C. Dragone, R. Kistler, and M. Milbrodt, J. Lightwave Technol. 11, 212 (1993).
[CrossRef]

Ayre, M.

Baets, R.

Bissessur, H.

R. Mestric, H. Bissessur, B. Martin, and A. Pinquier, IEEE Photon. Technol. Lett. 8, 638 (1996).
[CrossRef]

Bogaerts, W.

Brouckaert, J.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[CrossRef]

De Vos, K.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[CrossRef]

Dragone, C.

R. Adar, C. Henry, C. Dragone, R. Kistler, and M. Milbrodt, J. Lightwave Technol. 11, 212 (1993).
[CrossRef]

C. Dragone, IEEE Photon. Technol. Lett. 3, 812 (1991).
[CrossRef]

Dumon, P.

He, J.-J.

Henry, C.

R. Adar, C. Henry, C. Dragone, R. Kistler, and M. Milbrodt, J. Lightwave Technol. 11, 212 (1993).
[CrossRef]

Ishii, M.

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 1182 (2001).

Jaenen, P.

Jiang, X.

Kistler, R.

R. Adar, C. Henry, C. Dragone, R. Kistler, and M. Milbrodt, J. Lightwave Technol. 11, 212 (1993).
[CrossRef]

Klekamp, A.

Krauss, T.

Lang, T.

Martin, B.

R. Mestric, H. Bissessur, B. Martin, and A. Pinquier, IEEE Photon. Technol. Lett. 8, 638 (1996).
[CrossRef]

Mestric, R.

R. Mestric, H. Bissessur, B. Martin, and A. Pinquier, IEEE Photon. Technol. Lett. 8, 638 (1996).
[CrossRef]

Milbrodt, M.

R. Adar, C. Henry, C. Dragone, R. Kistler, and M. Milbrodt, J. Lightwave Technol. 11, 212 (1993).
[CrossRef]

Munzner, R.

Okamoto, K.

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 1182 (2001).

Pathak, S.

Pinquier, A.

R. Mestric, H. Bissessur, B. Martin, and A. Pinquier, IEEE Photon. Technol. Lett. 8, 638 (1996).
[CrossRef]

Roelkens, G.

Schrauwen, J.

Selvaraja, S.

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[CrossRef]

S. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, J. Lightwave Technol. 27, 4076 (2009).
[CrossRef]

Shibata, M.

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 1182 (2001).

Taillaert, D.

Takada, K.

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 1182 (2001).

van Laere, F.

Van Thourhout, D.

Vanslembrouck, M.

Xia, X.

Zou, J.

IEEE J. Sel. Top. Quantum Electron. (1)

W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 1182 (2001).

C. Dragone, IEEE Photon. Technol. Lett. 3, 812 (1991).
[CrossRef]

R. Mestric, H. Bissessur, B. Martin, and A. Pinquier, IEEE Photon. Technol. Lett. 8, 638 (1996).
[CrossRef]

J. Lightwave Technol. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Design details of 8×250GHz AWGs. (a) Device with 25 waveguides in the array. (g) Device with 40 waveguides in the array. (b) and (f) Input star coupler of the device in (a) and (g), respectively. (c) and (e) Zoom into waveguide array regions for the device in (a) and (g), respectively. (d) Detailed overview of the star coupler.

Fig. 2.
Fig. 2.

Optical images of the fabricated AWGs.

Fig. 3.
Fig. 3.

Experimental spectral response of 4×100GHz AWG with 28 waveguides used in the array.

Fig. 4.
Fig. 4.

Experimental spectral response of 8×250GHz AWG with 40 waveguides used in the array.

Fig. 5.
Fig. 5.

Experimental spectral response of 12×400GHz AWG with 70 waveguides used in the array.

Fig. 6.
Fig. 6.

(a) Insertion loss variation, (b) nonuniformity variation, (c) crosstalk variation, and (d) bandwidth variation with the variation of the number of waveguides used in the array waveguides for 4×100GHz, 8×250GHz, and 12×400GHz AWGs.

Tables (1)

Tables Icon

Table 1. Design Overview of Three AWG Sets

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D=RaΔθaΔλ,
=RaΔλasin[(λcdaΔλFSR)(λcneff(λ)λneff(λc)ngroupnslab(λc))],

Metrics