Abstract

We present a novel structure for holey fibers (HFs) with endlessly single-polarization single-mode characteristics, which is realized by introducing four elliptical airholes arranged in a hexagonal matrix in the core region. The validation of the design is done by use of a full-vectorial finite element method. We exhibit one typical design that can deliver a single-polarization single-mode region of more than 2400 nm with a confinement loss level lower than 0.01dB/km. We have also shown that the persevered polarization state possesses a wide wavelength band of flat dispersion behavior. As a consequence, such HFs are useful in high-speed communication systems or optical-fiber sensors since they are free of polarization mode dispersion and simultaneously immune to cross-talk effect.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Okoshi and K. Oyamada, Electron. Lett. 16, 712 (1980).
    [CrossRef]
  2. T. Katsuyama, H. Matsumura, and T. Suganuma, Electron. Lett. 17, 473 (1981).
    [CrossRef]
  3. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, Electron. Lett. 17, 530 (1981).
    [CrossRef]
  4. J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. Macchesney, and R. E. Howard, J. Lightwave Technol. 1, 370 (1983).
    [CrossRef]
  5. D. A. Nolan, G. E. Berkey, M. Li, X. Chen, W. A. Wood, and L. A. Zenteno, Opt. Lett. 29, 1855 (2004).
    [CrossRef]
  6. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, Opt. Lett. 25, 1325 (2000).
    [CrossRef]
  7. K. Saitoh and M. Koshiba, IEEE Photon. Technol. Lett. 15, 1384 (2003).
    [CrossRef]
  8. H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, IEEE Photon. Technol. Lett. 16, 182 (2004).
    [CrossRef]
  9. M. Eguchi and Y. Tsuji, Opt. Lett. 32, 2112 (2007).
    [CrossRef]
  10. M. J. Steel and R. M. Osgood, Opt. Lett. 26, 229 (2001).
    [CrossRef]
  11. M. J. Steel, Opt. Lett. 26, 488 (2001).
    [CrossRef]
  12. N. A. Issa, Martijn A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, Opt. Lett. 29, 1336 (2004).
    [CrossRef]
  13. J. C. Knight, T. A. Birks, and P. St. J. Russell, J. Opt. Soc. Am. A 15, 748 (1998).
    [CrossRef]
  14. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, Opt. Lett. 26, 1660 (2001).
    [CrossRef]

2007

2004

2003

K. Saitoh and M. Koshiba, IEEE Photon. Technol. Lett. 15, 1384 (2003).
[CrossRef]

2001

2000

1998

1983

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. Macchesney, and R. E. Howard, J. Lightwave Technol. 1, 370 (1983).
[CrossRef]

1981

T. Katsuyama, H. Matsumura, and T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

1980

T. Okoshi and K. Oyamada, Electron. Lett. 16, 712 (1980).
[CrossRef]

Arriaga, J.

Berkey, G. E.

Birks, T. A.

Botten, L. C.

Chen, X.

Cox, F.

de Sterke, C. M.

Edahiro, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

Eguchi, M.

Fellew, M.

Henry, G.

Hosaka, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

Howard, R. E.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. Macchesney, and R. E. Howard, J. Lightwave Technol. 1, 370 (1983).
[CrossRef]

Issa, N. A.

Katsuyama, T.

T. Katsuyama, H. Matsumura, and T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

Kawanishi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, IEEE Photon. Technol. Lett. 16, 182 (2004).
[CrossRef]

Knight, J. C.

Koshiba, M.

K. Saitoh and M. Koshiba, IEEE Photon. Technol. Lett. 15, 1384 (2003).
[CrossRef]

Koyanagi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, IEEE Photon. Technol. Lett. 16, 182 (2004).
[CrossRef]

Kubota, H.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, IEEE Photon. Technol. Lett. 16, 182 (2004).
[CrossRef]

Large, M. C. J.

Li, M.

Macchesney, J. B.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. Macchesney, and R. E. Howard, J. Lightwave Technol. 1, 370 (1983).
[CrossRef]

Mangan, B. J.

Matsumura, H.

T. Katsuyama, H. Matsumura, and T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

McPhedran, R. C.

Miya, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

Nolan, D. A.

Okamoto, K.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

Okoshi, T.

T. Okoshi and K. Oyamada, Electron. Lett. 16, 712 (1980).
[CrossRef]

Ortigosa-Blanch, A.

Osgood, R. M.

Oyamada, K.

T. Okoshi and K. Oyamada, Electron. Lett. 16, 712 (1980).
[CrossRef]

Pleibel, W.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. Macchesney, and R. E. Howard, J. Lightwave Technol. 1, 370 (1983).
[CrossRef]

Russell, P. St. J.

Saitoh, K.

K. Saitoh and M. Koshiba, IEEE Photon. Technol. Lett. 15, 1384 (2003).
[CrossRef]

Sasaki, Y.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

Sears, F. M.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. Macchesney, and R. E. Howard, J. Lightwave Technol. 1, 370 (1983).
[CrossRef]

Simpson, J. R.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. Macchesney, and R. E. Howard, J. Lightwave Technol. 1, 370 (1983).
[CrossRef]

Steel, M. J.

Stolen, R. H.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. Macchesney, and R. E. Howard, J. Lightwave Technol. 1, 370 (1983).
[CrossRef]

Suganuma, T.

T. Katsuyama, H. Matsumura, and T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

Tanaka, M.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, IEEE Photon. Technol. Lett. 16, 182 (2004).
[CrossRef]

Tsuji, Y.

van Eijkelenborg, Martijn A.

Wadsworth, W. J.

White, T. P.

Wood, W. A.

Yamaguchi, S.

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, IEEE Photon. Technol. Lett. 16, 182 (2004).
[CrossRef]

Zenteno, L. A.

Electron. Lett.

T. Okoshi and K. Oyamada, Electron. Lett. 16, 712 (1980).
[CrossRef]

T. Katsuyama, H. Matsumura, and T. Suganuma, Electron. Lett. 17, 473 (1981).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Saitoh and M. Koshiba, IEEE Photon. Technol. Lett. 15, 1384 (2003).
[CrossRef]

H. Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, IEEE Photon. Technol. Lett. 16, 182 (2004).
[CrossRef]

J. Lightwave Technol.

J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. Macchesney, and R. E. Howard, J. Lightwave Technol. 1, 370 (1983).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Four elliptical airholes are introduced in a hexagonally latticed circular-hole HF for achieving endlessly single-polarization single-mode behavior.

Fig. 2.
Fig. 2.

Dispersion properties of the two orthogonally polarized fundamental modes (solid curves) and the FSM (dashed curve) for a fiber with Λ=2μm, d/Λ=0.73, and d1/Λ=1. The lower left inset displays the intensity distributions and the electric-field vectors for the slow mode LP01y at λ=1.55μm. The upper right inset is a blowup of dispersion curves in the short wavelength region.

Fig. 3.
Fig. 3.

Cutoff properties for the two orthogonally polarized fundamental modes (LP01x and LP01y) and the first higher-order mode (LP11y) against the circular-hole diameters d/Λ. Above the LP01x and LP01y curves is a single-polarization single-mode region. The inset displays the intensity distributions and electric-field vectors of LP11y for a fiber with d/Λ=0.73 at λ=0.2μm.

Fig. 4.
Fig. 4.

Confinement loss at short wavelength range for fibers with Λ=2μm and d/Λ=0.706, but with different enlarged circular-hole diameters d1/Λ.

Fig. 5.
Fig. 5.

Intensity distributions for fibers with (a) uniform circular-hole sizes d/Λ=0.706 and (b) four enlarged circular airholes d1/Λ=1 at a wavelength of λ=0.3μm.

Fig. 6.
Fig. 6.

Confinement loss as a function of wavelength for fibers with different lattice pitch while other structural parameters are kept invariant as d/Λ=0.706 and d1/Λ=1. Calculations are performed with 11 airhole rings in the fiber cladding.

Fig. 7.
Fig. 7.

Chromatic dispersion for single-polarization and single-mode HFs. Solid curves correspond to fibers with the same circular-hole diameters d/Λ=0.706 but different lattice pitches. The dotted curve represents a fiber with d/Λ=0.73 and Λ=2μm. The dashed curve denotes the material dispersion.

Metrics