Abstract

A cyclic pulse coding technique is proposed and experimentally demonstrated for fast implementation of long-range Brillouin optical time-domain analysis (BOTDA). The proposed technique allows for accurate temperature and strain measurements with meter-scale spatial resolution over kilometers of standard single-mode fiber, with subsecond measurement times.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
    [CrossRef]
  2. F. Ravet, F. Brifford, B. Glisic, M. Niklès, and D. Inaudi, IEEE Sens. J. 9, 1391 (2009).
    [CrossRef]
  3. K. Yong Song, Z. He, and K. Hotate, Opt. Lett. 31, 2526 (2006).
    [CrossRef]
  4. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thevenaz, Opt. Lett. 35, 259 (2010).
    [CrossRef]
  5. H. Liang, W. Li, N. Linze, L. Chen, and X. Bao, Opt. Lett. 35, 1503 (2010).
    [CrossRef]
  6. R. Bernini, A. Minardo, and L. Zeni, Opt. Lett. 34, 2613 (2009).
    [CrossRef]
  7. Y. Peled, A. Motil, L. Yaron, and M. Tur, Opt. Express 19, 19845 (2011).
    [CrossRef]
  8. Y. Peled, A. Motil, and M. Tur, Opt. Express 20, 8584 (2012).
    [CrossRef]
  9. J. M. W. Brownjohn, A. De Stefano, Y.-L. Xu, H. Wenzel, and A. Emin Aktan, J. Civil Struct. Health Monitoring 1, 79 (2011).
    [CrossRef]
  10. M. A. Soto, G. Bolognini, and F. Di Pasquale, Opt. Express 18, 14878 (2010).
    [CrossRef]
  11. H. Song and S. Golonb, IEEE Trans. Inf. Theory 40, 504 (1994).
    [CrossRef]
  12. M. D. Jones, IEEE Photon. Technol. Lett. 15, 822824 (1993).
    [CrossRef]
  13. F. Venuti, “Multi-core approach for real time fiber optic sensing systems,” Master’s thesis (University of Pisa and Scuola Superiore Sant’Anna, 2010–2011).
  14. See for instance the Xilinx Virtex-7 specifications ( http://www.xilinx.com/publications/prod_mktg/Virtex7-Product-Brief.pdf ).
  15. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
    [CrossRef]

2012 (1)

2011 (2)

J. M. W. Brownjohn, A. De Stefano, Y.-L. Xu, H. Wenzel, and A. Emin Aktan, J. Civil Struct. Health Monitoring 1, 79 (2011).
[CrossRef]

Y. Peled, A. Motil, L. Yaron, and M. Tur, Opt. Express 19, 19845 (2011).
[CrossRef]

2010 (3)

2009 (2)

R. Bernini, A. Minardo, and L. Zeni, Opt. Lett. 34, 2613 (2009).
[CrossRef]

F. Ravet, F. Brifford, B. Glisic, M. Niklès, and D. Inaudi, IEEE Sens. J. 9, 1391 (2009).
[CrossRef]

2006 (1)

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

1994 (1)

H. Song and S. Golonb, IEEE Trans. Inf. Theory 40, 504 (1994).
[CrossRef]

1993 (1)

M. D. Jones, IEEE Photon. Technol. Lett. 15, 822824 (1993).
[CrossRef]

Bao, X.

Bernini, R.

Bolognini, G.

Brifford, F.

F. Ravet, F. Brifford, B. Glisic, M. Niklès, and D. Inaudi, IEEE Sens. J. 9, 1391 (2009).
[CrossRef]

Brownjohn, J. M. W.

J. M. W. Brownjohn, A. De Stefano, Y.-L. Xu, H. Wenzel, and A. Emin Aktan, J. Civil Struct. Health Monitoring 1, 79 (2011).
[CrossRef]

Chen, L.

De Stefano, A.

J. M. W. Brownjohn, A. De Stefano, Y.-L. Xu, H. Wenzel, and A. Emin Aktan, J. Civil Struct. Health Monitoring 1, 79 (2011).
[CrossRef]

Di Pasquale, F.

Emin Aktan, A.

J. M. W. Brownjohn, A. De Stefano, Y.-L. Xu, H. Wenzel, and A. Emin Aktan, J. Civil Struct. Health Monitoring 1, 79 (2011).
[CrossRef]

Glisic, B.

F. Ravet, F. Brifford, B. Glisic, M. Niklès, and D. Inaudi, IEEE Sens. J. 9, 1391 (2009).
[CrossRef]

Golonb, S.

H. Song and S. Golonb, IEEE Trans. Inf. Theory 40, 504 (1994).
[CrossRef]

He, Z.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Hotate, K.

Inaudi, D.

F. Ravet, F. Brifford, B. Glisic, M. Niklès, and D. Inaudi, IEEE Sens. J. 9, 1391 (2009).
[CrossRef]

Jones, M. D.

M. D. Jones, IEEE Photon. Technol. Lett. 15, 822824 (1993).
[CrossRef]

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Li, W.

Liang, H.

Linze, N.

Minardo, A.

Motil, A.

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Niklès, M.

F. Ravet, F. Brifford, B. Glisic, M. Niklès, and D. Inaudi, IEEE Sens. J. 9, 1391 (2009).
[CrossRef]

Peled, Y.

Ravet, F.

F. Ravet, F. Brifford, B. Glisic, M. Niklès, and D. Inaudi, IEEE Sens. J. 9, 1391 (2009).
[CrossRef]

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Song, H.

H. Song and S. Golonb, IEEE Trans. Inf. Theory 40, 504 (1994).
[CrossRef]

Soto, M. A.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Thevenaz, L.

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thevenaz, Opt. Lett. 35, 259 (2010).
[CrossRef]

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Tur, M.

Venuti, F.

F. Venuti, “Multi-core approach for real time fiber optic sensing systems,” Master’s thesis (University of Pisa and Scuola Superiore Sant’Anna, 2010–2011).

Wenzel, H.

J. M. W. Brownjohn, A. De Stefano, Y.-L. Xu, H. Wenzel, and A. Emin Aktan, J. Civil Struct. Health Monitoring 1, 79 (2011).
[CrossRef]

Xu, Y.-L.

J. M. W. Brownjohn, A. De Stefano, Y.-L. Xu, H. Wenzel, and A. Emin Aktan, J. Civil Struct. Health Monitoring 1, 79 (2011).
[CrossRef]

Yaron, L.

Yong Song, K.

Zeni, L.

IEEE Photon. Technol. Lett. (1)

M. D. Jones, IEEE Photon. Technol. Lett. 15, 822824 (1993).
[CrossRef]

IEEE Sens. J. (1)

F. Ravet, F. Brifford, B. Glisic, M. Niklès, and D. Inaudi, IEEE Sens. J. 9, 1391 (2009).
[CrossRef]

IEEE Trans. Inf. Theory (1)

H. Song and S. Golonb, IEEE Trans. Inf. Theory 40, 504 (1994).
[CrossRef]

J. Civil Struct. Health Monitoring (1)

J. M. W. Brownjohn, A. De Stefano, Y.-L. Xu, H. Wenzel, and A. Emin Aktan, J. Civil Struct. Health Monitoring 1, 79 (2011).
[CrossRef]

J. Lightwave Technol. (2)

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Other (2)

F. Venuti, “Multi-core approach for real time fiber optic sensing systems,” Master’s thesis (University of Pisa and Scuola Superiore Sant’Anna, 2010–2011).

See for instance the Xilinx Virtex-7 specifications ( http://www.xilinx.com/publications/prod_mktg/Virtex7-Product-Brief.pdf ).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup. PC: polarization controller; MZM: Mach–Zehnder modulator; VOA: variable optical attenuator; PS: polarization scrambler; OBPF: optical bandpass filter; FBG: fiber Bragg grating.

Fig. 2.
Fig. 2.

Theoretical coding gain versus code length (blue line); experimental coding gain versus code length (red line); and the measurement time required to reconstruct the BGS for each code length (green line).

Fig. 3.
Fig. 3.

BOTDA traces at 10.856 GHz for both 511 bit cycling Simplex coding with 100 averages (red line) and single pulse with 10 k averages (blue line) cases.

Fig. 4.
Fig. 4.

BGS measured using 511 bit cycling Simplex coding with 100 averages along the fiber length.

Fig. 5.
Fig. 5.

BGS measured using 511 bit cycling Simplex coding with 100 averages at the fiber end.

Fig. 6.
Fig. 6.

BFS measured using 511 bit cyclic Simplex coding at the fiber end.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔICW(t,Δν)=ICWLexp(αL){exp[vgt/2vgt/2+ΔzgB(ξ,Δν)Ip(ξ,Δν)dξ]1},
ΔICW(t,Δν)vgt/2vgt/2+ΔzgB(ξ,Δν)Ip(ξ,Δν)dξ.

Metrics