Abstract

We report a supercontinuum spanning well over an octave of measurable bandwidth from about 1 to 3.7 μm in a 2.1 mm long As2S3 fiber taper using the in situ tapering method. A sub-100-fs mode-locked thulium-doped fiber laser system with 300pJ of pulse energy was used as the pump source. Third-harmonic generation was observed and currently limits the pump pulse energy and achievable spectral bandwidth.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Lin and H. Stolen, Appl. Phys. Lett. 28, 216 (1976).
    [CrossRef]
  2. C. Vozzil, G. Cirmi, C. Manzoni, E. Benedetti, F. Calegari, G. Sansone, S. Stagira, O. Svelto, S. De Silvestri, M. Nisoli, and G. Cerullo, Opt. Express 14, 10109 (2006).
    [CrossRef]
  3. P. S. Monks and K. A. Willis, Educ. Chem. 47(4), 110 (2010).
  4. J. I. Steinfeld and J. Wormhoudt, Annu. Rev. Phys. Chem. 49, 203 (1998).
    [CrossRef]
  5. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, Inorg. Mater. 45, 1439 (2009).
    [CrossRef]
  6. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nquyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, J. Non-Cryst. Solids 354, 462 (2008).
    [CrossRef]
  7. W. S. Rodney, I. H. Maliston, and T. A. King, J. Opt. Soc. Am. 48, 633 (1958).
    [CrossRef]
  8. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  9. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, Opt. Lett. 25, 1415 (2000).
    [CrossRef]
  10. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, Opt. Lett. 33, 660 (2008).
    [CrossRef]
  11. D. D. Hudson, S. A. Dekker, E. C. Magi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, Opt. Lett. 36, 1122 (2011).
    [CrossRef]
  12. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, Opt. Express 16, 7161 (2008).
    [CrossRef]
  13. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, Opt. Express 18, 6722 (2010).
    [CrossRef]
  14. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, Opt. Express 18, 4547 (2010).
    [CrossRef]
  15. M. A. Foster and A. L. Gaeta, Opt. Express 12, 3137 (2004).
    [CrossRef]
  16. M. Duhant, W. Renard, G. Canat, J. Tolès, P. Toupin, L. Brilland, F. Smektala, A. Bétourné, P. Bourdon, and G. Renversez, Proc. SPIE 8237, 823735 (2012).
    [CrossRef]
  17. A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, Opt. Express 20, 24218 (2012).
    [CrossRef]
  18. C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, J. Vis. Exp. (75), e50518 (2013).
    [CrossRef]
  19. J. Jiang, A. Ruehl, I. Hartl, and M. E. Fermann, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper CThBB5.
  20. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, F. L. Terry, M. Neelakandan, and A. Chan, J. Opt. Soc. Am. B 28, 2486 (2011).
    [CrossRef]
  21. J. Swiderski, M. Michalska, and G. Maze, Opt. Express 21, 7851 (2013).
    [CrossRef]
  22. N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. St. J. Russell, Opt. Express 21, 10969 (2013).
    [CrossRef]
  23. T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
    [CrossRef]
  24. T. Lee, Y. Jung, C. A. Codemard, M. Ding, N. G. R. Broderick, and G. Brambilla, Opt. Express 20, 8503 (2012).
    [CrossRef]
  25. J. S. Sanghera and I. D. Aggrawal, J. Non-Cryst. Solids 213–214, 63 (1997).
    [CrossRef]
  26. M. M. Broer, D. M. Krol, and D. J. DiGiovanni, Opt. Lett. 18, 799 (1993).
    [CrossRef]
  27. C. Xiong, E. Mägi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, Appl. Opt. 48, 5467 (2009).
    [CrossRef]

2013

2012

2011

2010

2009

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, Inorg. Mater. 45, 1439 (2009).
[CrossRef]

C. Xiong, E. Mägi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, Appl. Opt. 48, 5467 (2009).
[CrossRef]

2008

2006

2004

2000

1998

J. I. Steinfeld and J. Wormhoudt, Annu. Rev. Phys. Chem. 49, 203 (1998).
[CrossRef]

1997

J. S. Sanghera and I. D. Aggrawal, J. Non-Cryst. Solids 213–214, 63 (1997).
[CrossRef]

1993

1992

T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

1976

C. Lin and H. Stolen, Appl. Phys. Lett. 28, 216 (1976).
[CrossRef]

1958

Aggarwal, I. D.

Aggrawal, I. D.

J. S. Sanghera and I. D. Aggrawal, J. Non-Cryst. Solids 213–214, 63 (1997).
[CrossRef]

Alexander, V. V.

Bashkansky, M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nquyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, J. Non-Cryst. Solids 354, 462 (2008).
[CrossRef]

Benedetti, E.

Bétourné, A.

M. Duhant, W. Renard, G. Canat, J. Tolès, P. Toupin, L. Brilland, F. Smektala, A. Bétourné, P. Bourdon, and G. Renversez, Proc. SPIE 8237, 823735 (2012).
[CrossRef]

Birks, T. A.

Bourdon, P.

M. Duhant, W. Renard, G. Canat, J. Tolès, P. Toupin, L. Brilland, F. Smektala, A. Bétourné, P. Bourdon, and G. Renversez, Proc. SPIE 8237, 823735 (2012).
[CrossRef]

Brambilla, G.

Brilland, L.

Broderick, N. G. R.

Broer, M. M.

Byer, R. L.

Calegari, F.

Canat, G.

M. Duhant, W. Renard, G. Canat, J. Tolès, P. Toupin, L. Brilland, F. Smektala, A. Bétourné, P. Bourdon, and G. Renversez, Proc. SPIE 8237, 823735 (2012).
[CrossRef]

Cerullo, G.

Chan, A.

Chang, W.

Churbanov, M. F.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, Inorg. Mater. 45, 1439 (2009).
[CrossRef]

Cirmi, G.

Codemard, C. A.

Cordeiro, C. M. B.

Coulombier, Q.

Cronin-Golomb, M.

Dekker, S.

Dekker, S. A.

Dianov, E. M.

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, Opt. Express 20, 24218 (2012).
[CrossRef]

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, Inorg. Mater. 45, 1439 (2009).
[CrossRef]

DiGiovanni, D. J.

Ding, M.

Domachuk, P.

Dudley, J. M.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Duhant, M.

M. Duhant, W. Renard, G. Canat, J. Tolès, P. Toupin, L. Brilland, F. Smektala, A. Bétourné, P. Bourdon, and G. Renversez, Proc. SPIE 8237, 823735 (2012).
[CrossRef]

Dutton, Z.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nquyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, J. Non-Cryst. Solids 354, 462 (2008).
[CrossRef]

Eggleton, B. J.

El-Amraoui, M.

Fatome, J.

Fermann, M. E.

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. St. J. Russell, Opt. Express 21, 10969 (2013).
[CrossRef]

J. Jiang, A. Ruehl, I. Hartl, and M. E. Fermann, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper CThBB5.

Florea, C. M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nquyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, J. Non-Cryst. Solids 354, 462 (2008).
[CrossRef]

Fortier, C.

Foster, M. A.

Freeman, M. J.

Fu, L.

Gadret, G.

Gaeta, A. L.

George, A. K.

Granzow, N.

Hartl, I.

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. St. J. Russell, Opt. Express 21, 10969 (2013).
[CrossRef]

J. Jiang, A. Ruehl, I. Hartl, and M. E. Fermann, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper CThBB5.

Hu, J.

Hudson, D. D.

Islam, M. N.

Jackson, S. D.

Jiang, J.

J. Jiang, A. Ruehl, I. Hartl, and M. E. Fermann, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper CThBB5.

Judge, A. C.

Jules, J. C.

Jung, Y.

Kibler, B.

King, T. A.

Knight, J. C.

Krol, D. M.

Kulkarni, O. P.

Kumar, M.

Lamont, M. R. E.

Lee, K. F.

Lee, T.

Li, E.

Li, Y. W.

T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

Lin, C.

C. Lin and H. Stolen, Appl. Phys. Lett. 28, 216 (1976).
[CrossRef]

Luan, F.

Magi, E. C.

Mägi, E.

Mägi, E. C.

Maliston, I. H.

Manzoni, C.

Marandi, A.

Maze, G.

Menyuk, C. R.

Messaddeq, Y.

Michalska, M.

Monks, P. S.

P. S. Monks and K. A. Willis, Educ. Chem. 47(4), 110 (2010).

Neelakandan, M.

Nisoli, M.

Nquyen, V. Q.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nquyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, J. Non-Cryst. Solids 354, 462 (2008).
[CrossRef]

Omenetto, F. G.

Plotnichenko, V. G.

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, Opt. Express 20, 24218 (2012).
[CrossRef]

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, Inorg. Mater. 45, 1439 (2009).
[CrossRef]

Polacchini, C. F.

Pureza, P.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nquyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, J. Non-Cryst. Solids 354, 462 (2008).
[CrossRef]

Renard, W.

M. Duhant, W. Renard, G. Canat, J. Tolès, P. Toupin, L. Brilland, F. Smektala, A. Bétourné, P. Bourdon, and G. Renversez, Proc. SPIE 8237, 823735 (2012).
[CrossRef]

Renversez, G.

Rodney, W. S.

Roelens, M. A. F.

Rudy, C. W.

Ruehl, A.

J. Jiang, A. Ruehl, I. Hartl, and M. E. Fermann, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper CThBB5.

Russell, P. S. J.

Russell, P. St. J.

Sanghera, J. S.

Sansone, G.

Schmidt, M. A.

Shaw, L. B.

Shiryaev, V. S.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, Inorg. Mater. 45, 1439 (2009).
[CrossRef]

Silvestri, S. De

Skripatchev, I.

Smektala, F.

Snopatin, G. E.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, Inorg. Mater. 45, 1439 (2009).
[CrossRef]

Stagira, S.

Steinfeld, J. I.

J. I. Steinfeld and J. Wormhoudt, Annu. Rev. Phys. Chem. 49, 203 (1998).
[CrossRef]

Stolen, H.

C. Lin and H. Stolen, Appl. Phys. Lett. 28, 216 (1976).
[CrossRef]

Svelto, O.

Swiderski, J.

Szpulak, M.

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Terry, F. L.

Tolès, J.

M. Duhant, W. Renard, G. Canat, J. Tolès, P. Toupin, L. Brilland, F. Smektala, A. Bétourné, P. Bourdon, and G. Renversez, Proc. SPIE 8237, 823735 (2012).
[CrossRef]

Toupin, P.

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. St. J. Russell, Opt. Express 21, 10969 (2013).
[CrossRef]

M. Duhant, W. Renard, G. Canat, J. Tolès, P. Toupin, L. Brilland, F. Smektala, A. Bétourné, P. Bourdon, and G. Renversez, Proc. SPIE 8237, 823735 (2012).
[CrossRef]

Troles, J.

Tuniz, A.

Vodopyanov, K. L.

Vozzil, C.

Wadsworth, W. J.

Wang, A.

Wang, L.

Willis, K. A.

P. S. Monks and K. A. Willis, Educ. Chem. 47(4), 110 (2010).

Wolchover, N. A.

Wondraczek, L.

Wormhoudt, J.

J. I. Steinfeld and J. Wormhoudt, Annu. Rev. Phys. Chem. 49, 203 (1998).
[CrossRef]

Xiong, C.

Yeom, D.-I.

Annu. Rev. Phys. Chem.

J. I. Steinfeld and J. Wormhoudt, Annu. Rev. Phys. Chem. 49, 203 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. Lin and H. Stolen, Appl. Phys. Lett. 28, 216 (1976).
[CrossRef]

Educ. Chem.

P. S. Monks and K. A. Willis, Educ. Chem. 47(4), 110 (2010).

Inorg. Mater.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, Inorg. Mater. 45, 1439 (2009).
[CrossRef]

J. Lightwave Technol.

T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

J. Non-Cryst. Solids

J. S. Sanghera and I. D. Aggrawal, J. Non-Cryst. Solids 213–214, 63 (1997).
[CrossRef]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nquyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, J. Non-Cryst. Solids 354, 462 (2008).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Proc. SPIE

M. Duhant, W. Renard, G. Canat, J. Tolès, P. Toupin, L. Brilland, F. Smektala, A. Bétourné, P. Bourdon, and G. Renversez, Proc. SPIE 8237, 823735 (2012).
[CrossRef]

Other

C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, J. Vis. Exp. (75), e50518 (2013).
[CrossRef]

J. Jiang, A. Ruehl, I. Hartl, and M. E. Fermann, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2011), paper CThBB5.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

GVD of the fundamental mode for the untapered fiber (solid) and tapered fiber with 2μm diameter (dashed) for varying wavelengths (bottom axis) is shown. The pump wavelength (2.04 μm) experiences normal GVD in the untapered fiber and anomalous GVD once the fiber is tapered. The GVD at the pump wavelength (dotted) is shown for varying fiber taper diameters (top axis) of the order of 1 to 100 μm. The GVD becomes anomalous at fiber diameters below 3μm.

Fig. 2.
Fig. 2.

Setup for the in situ fiber tapering system with a 2 μm fs pump source is shown. The motorized stages are used to taper the fiber while the linear stages are used to optimize coupling to the fiber and to the spectral measurement device.

Fig. 3.
Fig. 3.

Output power at 2.2 μm during the tapering process versus the pulling length (bottom axis) and corresponding fiber waist diameter (top axis, log scale). The peak in the spectral measurement signal, at a diameter of 1.95 μm, occurred as the GVD became anomalous as shown in Fig. 1. Dips in the output signal occur due to monitoring of the image of the output fiber tip to ensure coupling to the fundamental mode was maintained.

Fig. 4.
Fig. 4.

2 μm pump spectrum (dotted), the SCG spectrum (solid), and the simulation result (dashed) are shown. The short-wavelength side of the SCG was measured with a Ge detector, the middle of the spectrum with an InSb detector, and the long-wavelength side of the spectrum with a 2.5 μm long-pass filter in place.

Metrics