Abstract

An antenna-coupled field effect transistor (FET) as a plasma wave terahertz detector is used with the current steering to record separately the gate–source and gate–drain photoresponses and their phase sensitive combination. This method is based on the observation that the plasmon–terminal coupling is cut off in saturation, resulting in only one-sided sensitivity. A polarimetric example is presented with intensity and polarization angle reconstruction using a single three-terminal antenna-coupled Si-metal-oxide semiconductor FET (MOSFET). The technique is applicable to various detection schemes and technologies (high electron mobility transistors and GaAs-, GaN-, and Si-MOSFETs), and other application possibilities are discussed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Dyakonov and M. Shur, Phys. Rev. Lett. 71, 2465 (1993).
    [CrossRef]
  2. M. Tonouchi, Nat. Photonics 1, 97 (2007).
    [CrossRef]
  3. W. Knap, S. Rumyantsev, M. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, Nanotechnology 24, 214002 (2013).
    [CrossRef]
  4. J. Lu and M. Shur, in Twelfth International Symposium on Space Terahertz Technology (NASA Jet Propulsion Laboratory, 2001), Vol. 1, p. 103.
  5. M. Sakowicz, M. Lifshits, O. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, J. Appl. Phys. 110, 054512 (2011).
    [CrossRef]
  6. S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. Terahertz Sci. Technol. 2, 278 (2012).
  7. E. Castro-Camus, J. Infrared Millimeter Waves 33, 418 (2012).
    [CrossRef]
  8. R. Zhang, Y. Cui, W. Sun, and Y. Zhang, Appl. Opt. 47, 6422 (2008).
    [CrossRef]
  9. N. C. Van der Valk, W. A. van der Marel, and P. Planken, Opt. Lett. 30, 2802 (2005).
    [CrossRef]
  10. E. Castro-Camus, J. Lloyd-Hughes, M. Johnston, M. Fraser, H. Tan, and C. Jagadish, Appl. Phys. Lett. 86, 254102 (2005).
    [CrossRef]
  11. G. Png, S. Mickan, T. Rainsford, and D. Abbott, Proc. SPIE 5649, 768 (2005).
    [CrossRef]

2013 (1)

W. Knap, S. Rumyantsev, M. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, Nanotechnology 24, 214002 (2013).
[CrossRef]

2012 (2)

S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. Terahertz Sci. Technol. 2, 278 (2012).

E. Castro-Camus, J. Infrared Millimeter Waves 33, 418 (2012).
[CrossRef]

2011 (1)

M. Sakowicz, M. Lifshits, O. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, J. Appl. Phys. 110, 054512 (2011).
[CrossRef]

2008 (1)

2007 (1)

M. Tonouchi, Nat. Photonics 1, 97 (2007).
[CrossRef]

2005 (3)

N. C. Van der Valk, W. A. van der Marel, and P. Planken, Opt. Lett. 30, 2802 (2005).
[CrossRef]

E. Castro-Camus, J. Lloyd-Hughes, M. Johnston, M. Fraser, H. Tan, and C. Jagadish, Appl. Phys. Lett. 86, 254102 (2005).
[CrossRef]

G. Png, S. Mickan, T. Rainsford, and D. Abbott, Proc. SPIE 5649, 768 (2005).
[CrossRef]

1993 (1)

M. Dyakonov and M. Shur, Phys. Rev. Lett. 71, 2465 (1993).
[CrossRef]

Abbott, D.

G. Png, S. Mickan, T. Rainsford, and D. Abbott, Proc. SPIE 5649, 768 (2005).
[CrossRef]

Blin, S.

W. Knap, S. Rumyantsev, M. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, Nanotechnology 24, 214002 (2013).
[CrossRef]

Burke, P.

S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. Terahertz Sci. Technol. 2, 278 (2012).

Castro-Camus, E.

E. Castro-Camus, J. Infrared Millimeter Waves 33, 418 (2012).
[CrossRef]

E. Castro-Camus, J. Lloyd-Hughes, M. Johnston, M. Fraser, H. Tan, and C. Jagadish, Appl. Phys. Lett. 86, 254102 (2005).
[CrossRef]

Coquillat, D.

W. Knap, S. Rumyantsev, M. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, Nanotechnology 24, 214002 (2013).
[CrossRef]

M. Sakowicz, M. Lifshits, O. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, J. Appl. Phys. 110, 054512 (2011).
[CrossRef]

Cui, Y.

Dyakonov, M.

M. Dyakonov and M. Shur, Phys. Rev. Lett. 71, 2465 (1993).
[CrossRef]

Dyakonova, N.

W. Knap, S. Rumyantsev, M. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, Nanotechnology 24, 214002 (2013).
[CrossRef]

Fraser, M.

E. Castro-Camus, J. Lloyd-Hughes, M. Johnston, M. Fraser, H. Tan, and C. Jagadish, Appl. Phys. Lett. 86, 254102 (2005).
[CrossRef]

Gossard, A.

S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. Terahertz Sci. Technol. 2, 278 (2012).

Jagadish, C.

E. Castro-Camus, J. Lloyd-Hughes, M. Johnston, M. Fraser, H. Tan, and C. Jagadish, Appl. Phys. Lett. 86, 254102 (2005).
[CrossRef]

Johnston, M.

E. Castro-Camus, J. Lloyd-Hughes, M. Johnston, M. Fraser, H. Tan, and C. Jagadish, Appl. Phys. Lett. 86, 254102 (2005).
[CrossRef]

Kim, S.

S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. Terahertz Sci. Technol. 2, 278 (2012).

Klimenko, O.

M. Sakowicz, M. Lifshits, O. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, J. Appl. Phys. 110, 054512 (2011).
[CrossRef]

Knap, W.

W. Knap, S. Rumyantsev, M. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, Nanotechnology 24, 214002 (2013).
[CrossRef]

M. Sakowicz, M. Lifshits, O. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, J. Appl. Phys. 110, 054512 (2011).
[CrossRef]

Lifshits, M.

M. Sakowicz, M. Lifshits, O. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, J. Appl. Phys. 110, 054512 (2011).
[CrossRef]

Lloyd-Hughes, J.

E. Castro-Camus, J. Lloyd-Hughes, M. Johnston, M. Fraser, H. Tan, and C. Jagadish, Appl. Phys. Lett. 86, 254102 (2005).
[CrossRef]

Lu, J.

J. Lu and M. Shur, in Twelfth International Symposium on Space Terahertz Technology (NASA Jet Propulsion Laboratory, 2001), Vol. 1, p. 103.

Mickan, S.

G. Png, S. Mickan, T. Rainsford, and D. Abbott, Proc. SPIE 5649, 768 (2005).
[CrossRef]

Nagatsuma, T.

W. Knap, S. Rumyantsev, M. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, Nanotechnology 24, 214002 (2013).
[CrossRef]

Planken, P.

Png, G.

G. Png, S. Mickan, T. Rainsford, and D. Abbott, Proc. SPIE 5649, 768 (2005).
[CrossRef]

Preu, S.

S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. Terahertz Sci. Technol. 2, 278 (2012).

Rainsford, T.

G. Png, S. Mickan, T. Rainsford, and D. Abbott, Proc. SPIE 5649, 768 (2005).
[CrossRef]

Rumyantsev, S.

W. Knap, S. Rumyantsev, M. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, Nanotechnology 24, 214002 (2013).
[CrossRef]

Sakowicz, M.

M. Sakowicz, M. Lifshits, O. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, J. Appl. Phys. 110, 054512 (2011).
[CrossRef]

Schuster, F.

M. Sakowicz, M. Lifshits, O. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, J. Appl. Phys. 110, 054512 (2011).
[CrossRef]

Sherwin, M.

S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. Terahertz Sci. Technol. 2, 278 (2012).

Shur, M.

W. Knap, S. Rumyantsev, M. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, Nanotechnology 24, 214002 (2013).
[CrossRef]

M. Dyakonov and M. Shur, Phys. Rev. Lett. 71, 2465 (1993).
[CrossRef]

J. Lu and M. Shur, in Twelfth International Symposium on Space Terahertz Technology (NASA Jet Propulsion Laboratory, 2001), Vol. 1, p. 103.

Sun, W.

Tan, H.

E. Castro-Camus, J. Lloyd-Hughes, M. Johnston, M. Fraser, H. Tan, and C. Jagadish, Appl. Phys. Lett. 86, 254102 (2005).
[CrossRef]

Teppe, F.

W. Knap, S. Rumyantsev, M. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, Nanotechnology 24, 214002 (2013).
[CrossRef]

M. Sakowicz, M. Lifshits, O. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, J. Appl. Phys. 110, 054512 (2011).
[CrossRef]

Tonouchi, M.

M. Tonouchi, Nat. Photonics 1, 97 (2007).
[CrossRef]

Tredicucci, A.

W. Knap, S. Rumyantsev, M. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, Nanotechnology 24, 214002 (2013).
[CrossRef]

van der Marel, W. A.

Van der Valk, N. C.

Verma, R.

S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. Terahertz Sci. Technol. 2, 278 (2012).

Vinh, N.

S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. Terahertz Sci. Technol. 2, 278 (2012).

Vitiello, M.

W. Knap, S. Rumyantsev, M. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, Nanotechnology 24, 214002 (2013).
[CrossRef]

Zhang, R.

Zhang, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Castro-Camus, J. Lloyd-Hughes, M. Johnston, M. Fraser, H. Tan, and C. Jagadish, Appl. Phys. Lett. 86, 254102 (2005).
[CrossRef]

IEEE Trans. Terahertz Sci. Technol. (1)

S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. Terahertz Sci. Technol. 2, 278 (2012).

J. Appl. Phys. (1)

M. Sakowicz, M. Lifshits, O. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, J. Appl. Phys. 110, 054512 (2011).
[CrossRef]

J. Infrared Millimeter Waves (1)

E. Castro-Camus, J. Infrared Millimeter Waves 33, 418 (2012).
[CrossRef]

Nanotechnology (1)

W. Knap, S. Rumyantsev, M. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, Nanotechnology 24, 214002 (2013).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, Nat. Photonics 1, 97 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

M. Dyakonov and M. Shur, Phys. Rev. Lett. 71, 2465 (1993).
[CrossRef]

Proc. SPIE (1)

G. Png, S. Mickan, T. Rainsford, and D. Abbott, Proc. SPIE 5649, 768 (2005).
[CrossRef]

Other (1)

J. Lu and M. Shur, in Twelfth International Symposium on Space Terahertz Technology (NASA Jet Propulsion Laboratory, 2001), Vol. 1, p. 103.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Illustration of the FET plasma wave detector under different biasing conditions. (a) (top) No drain–source current flows, and the source and drain sides have equal responsivity; (middle) the drain side is biased, as the depletion region of the channel cuts off the plasma perturbation from the drain, and only the source side is sensitive; (bottom) the drain side is sensitive. S, source; G, gate; D, drain. (b) Modeled responsivity and measured photoresponse as a function of the drain–source potential with fixed gate potential and equal RF signal.

Fig. 2.
Fig. 2.

(a) Microphoto of the antenna-coupled FET detector chip and the connected amplifier, (b) a close-up of the detector used in the experiments, and (c) the electronic connection of the used detector.

Fig. 3.
Fig. 3.

(a) Separately recorded source (green) and drain (blue) side normalized photoresponses as a function of the incident linearly polarized beam angle in the polar coordinate system and (b) the reconstructed polarization angle (top) and the polarization independent intensity (bottom).

Fig. 4.
Fig. 4.

Optical setup of the polarimetric example.

Fig. 5.
Fig. 5.

Plastic spoon has been raster scanned at 362 GHz, and the polarization independent intensity and the polarization angle are reconstructed. (a) The visual photo of the sample showing the raster-scanned areas and the source polarization direction; (b), (c) the color-coded intensity with overlaid polarization angles.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔUS(D)=ηS(D){uGS(D)ac}2ln[IDS(VGS,VDS)]VGS(D).
ΔUD=ηDI(cos(2Θ)+kD),ΔUS=ηSI(sin(2Θ)+kS),

Metrics