Abstract

High-efficiency dynamic holography at 1.55 μm is demonstrated in a broad-area InGaAs/InP multiple-quantum-well vertical microcavity. The design places single quantum wells at the cavity antinodes, reducing mode-pulling and enabling a higher Q-factor. The device is pumped by interference fringes through an amorphous mirror that is transparent to a high-energy hologram writing pulse at a wavelength of 1.06 μm. Optically pumped free carrier gratings are probed by a tunable 1.5 μm laser in a four-wave mixing configuration. Diffraction efficiency into both m=±1 diffraction orders of 35% (70% total) has been obtained with a phase grating contribution approaching the maximum π phase shift by combining absorption bleaching with asymmetric Fabry–Perot reflectivity. The diffracted signal exhibits rise/fall times of 5 ns, demonstrating the high speed capabilities of this device.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 4, 332 (1998).
    [CrossRef]
  2. S. Kessel, Opt. Spectrosc. 96, 163 (2004).
    [CrossRef]
  3. G. Roosen and M-T. Plantegenest, J. Opt. 14, 199 (1983).
    [CrossRef]
  4. D. D. Nolte, K. M. Kwolek, C. Lenox, and B. Streetman, J. Opt. Soc. Am. B 18, 3 (2001).
  5. M. C. Barbosa, L. Mosquera, and J. Frejlich, Appl. Phys. B 72, 717 (2001).
    [CrossRef]
  6. G. Steckman, R. Bittner, K. Meerholz, and D. Psaltis, Opt. Commun. 185, 13 (2000).
    [CrossRef]
  7. D. D. Nolte, J. Appl. Phys. 85, 6259 (1999).
    [CrossRef]
  8. M. J. Damzen, R. P. M. Green, and G. J. Crofts, Opt. Commun. 110, 152 (1994).
    [CrossRef]
  9. A. Moreau, Q. He, I. Zaquine, A. Maruani, and R. Frey, Opt. Lett. 32, 208 (2007).
    [CrossRef]
  10. D. D. Nolte and K. M. Kwolek, Opt. Commun. 115, 606 (1995).
    [CrossRef]
  11. E. Hecht, Optics (Addison-Wesley, 2001), Chap. 9.7.
  12. A. K. Tipping, G. Parry, and A. J. Moseley, Semicond. Sci. Technol. 5, 525 (1990).
    [CrossRef]
  13. H. Haug and S. W. Kock, Quantum Theory of the Optical and Electronic Properties of Semiconductor, 4th ed. (World Scientific, 2004), Chap. 5.4.
  14. F. R. Bacher, J. S. Blakemore, J. T. Ebner, and J. R. Arthur, Phys. Rev. B 37, 2551 (1988).
    [CrossRef]
  15. D. S. Gerber, R. Droopad, and G. N. Maracas, IEEE Photon. Technol. Lett. 5, 55 (1993).
    [CrossRef]
  16. K. M. Kwolek, M. R. Melloch, D. D. Nolte, and G. A. Brost, Appl. Phys. Lett. 67, 736 (1995).
    [CrossRef]
  17. C. W. Thiel, “Four-wave mixing and its applications,” http://www.physics.montana.edu/students/thiel/docs/FWMixing.pdf .

2007 (1)

2004 (1)

S. Kessel, Opt. Spectrosc. 96, 163 (2004).
[CrossRef]

2001 (2)

D. D. Nolte, K. M. Kwolek, C. Lenox, and B. Streetman, J. Opt. Soc. Am. B 18, 3 (2001).

M. C. Barbosa, L. Mosquera, and J. Frejlich, Appl. Phys. B 72, 717 (2001).
[CrossRef]

2000 (1)

G. Steckman, R. Bittner, K. Meerholz, and D. Psaltis, Opt. Commun. 185, 13 (2000).
[CrossRef]

1999 (1)

D. D. Nolte, J. Appl. Phys. 85, 6259 (1999).
[CrossRef]

1998 (1)

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 4, 332 (1998).
[CrossRef]

1995 (2)

K. M. Kwolek, M. R. Melloch, D. D. Nolte, and G. A. Brost, Appl. Phys. Lett. 67, 736 (1995).
[CrossRef]

D. D. Nolte and K. M. Kwolek, Opt. Commun. 115, 606 (1995).
[CrossRef]

1994 (1)

M. J. Damzen, R. P. M. Green, and G. J. Crofts, Opt. Commun. 110, 152 (1994).
[CrossRef]

1993 (1)

D. S. Gerber, R. Droopad, and G. N. Maracas, IEEE Photon. Technol. Lett. 5, 55 (1993).
[CrossRef]

1990 (1)

A. K. Tipping, G. Parry, and A. J. Moseley, Semicond. Sci. Technol. 5, 525 (1990).
[CrossRef]

1988 (1)

F. R. Bacher, J. S. Blakemore, J. T. Ebner, and J. R. Arthur, Phys. Rev. B 37, 2551 (1988).
[CrossRef]

1983 (1)

G. Roosen and M-T. Plantegenest, J. Opt. 14, 199 (1983).
[CrossRef]

Arthur, J. R.

F. R. Bacher, J. S. Blakemore, J. T. Ebner, and J. R. Arthur, Phys. Rev. B 37, 2551 (1988).
[CrossRef]

Bacher, F. R.

F. R. Bacher, J. S. Blakemore, J. T. Ebner, and J. R. Arthur, Phys. Rev. B 37, 2551 (1988).
[CrossRef]

Barbosa, M. C.

M. C. Barbosa, L. Mosquera, and J. Frejlich, Appl. Phys. B 72, 717 (2001).
[CrossRef]

Bittner, R.

G. Steckman, R. Bittner, K. Meerholz, and D. Psaltis, Opt. Commun. 185, 13 (2000).
[CrossRef]

Blakemore, J. S.

F. R. Bacher, J. S. Blakemore, J. T. Ebner, and J. R. Arthur, Phys. Rev. B 37, 2551 (1988).
[CrossRef]

Brost, G. A.

K. M. Kwolek, M. R. Melloch, D. D. Nolte, and G. A. Brost, Appl. Phys. Lett. 67, 736 (1995).
[CrossRef]

Crofts, G. J.

M. J. Damzen, R. P. M. Green, and G. J. Crofts, Opt. Commun. 110, 152 (1994).
[CrossRef]

Damzen, M. J.

M. J. Damzen, R. P. M. Green, and G. J. Crofts, Opt. Commun. 110, 152 (1994).
[CrossRef]

Ding, Y.

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 4, 332 (1998).
[CrossRef]

Droopad, R.

D. S. Gerber, R. Droopad, and G. N. Maracas, IEEE Photon. Technol. Lett. 5, 55 (1993).
[CrossRef]

Ebner, J. T.

F. R. Bacher, J. S. Blakemore, J. T. Ebner, and J. R. Arthur, Phys. Rev. B 37, 2551 (1988).
[CrossRef]

Frejlich, J.

M. C. Barbosa, L. Mosquera, and J. Frejlich, Appl. Phys. B 72, 717 (2001).
[CrossRef]

Frey, R.

Gerber, D. S.

D. S. Gerber, R. Droopad, and G. N. Maracas, IEEE Photon. Technol. Lett. 5, 55 (1993).
[CrossRef]

Green, R. P. M.

M. J. Damzen, R. P. M. Green, and G. J. Crofts, Opt. Commun. 110, 152 (1994).
[CrossRef]

Haug, H.

H. Haug and S. W. Kock, Quantum Theory of the Optical and Electronic Properties of Semiconductor, 4th ed. (World Scientific, 2004), Chap. 5.4.

He, Q.

Hecht, E.

E. Hecht, Optics (Addison-Wesley, 2001), Chap. 9.7.

Kessel, S.

S. Kessel, Opt. Spectrosc. 96, 163 (2004).
[CrossRef]

Kock, S. W.

H. Haug and S. W. Kock, Quantum Theory of the Optical and Electronic Properties of Semiconductor, 4th ed. (World Scientific, 2004), Chap. 5.4.

Kwolek, K. M.

D. D. Nolte, K. M. Kwolek, C. Lenox, and B. Streetman, J. Opt. Soc. Am. B 18, 3 (2001).

D. D. Nolte and K. M. Kwolek, Opt. Commun. 115, 606 (1995).
[CrossRef]

K. M. Kwolek, M. R. Melloch, D. D. Nolte, and G. A. Brost, Appl. Phys. Lett. 67, 736 (1995).
[CrossRef]

Lenox, C.

D. D. Nolte, K. M. Kwolek, C. Lenox, and B. Streetman, J. Opt. Soc. Am. B 18, 3 (2001).

Maracas, G. N.

D. S. Gerber, R. Droopad, and G. N. Maracas, IEEE Photon. Technol. Lett. 5, 55 (1993).
[CrossRef]

Maruani, A.

Meerholz, K.

G. Steckman, R. Bittner, K. Meerholz, and D. Psaltis, Opt. Commun. 185, 13 (2000).
[CrossRef]

Melloch, M. R.

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 4, 332 (1998).
[CrossRef]

K. M. Kwolek, M. R. Melloch, D. D. Nolte, and G. A. Brost, Appl. Phys. Lett. 67, 736 (1995).
[CrossRef]

Moreau, A.

Moseley, A. J.

A. K. Tipping, G. Parry, and A. J. Moseley, Semicond. Sci. Technol. 5, 525 (1990).
[CrossRef]

Mosquera, L.

M. C. Barbosa, L. Mosquera, and J. Frejlich, Appl. Phys. B 72, 717 (2001).
[CrossRef]

Nolte, D. D.

D. D. Nolte, K. M. Kwolek, C. Lenox, and B. Streetman, J. Opt. Soc. Am. B 18, 3 (2001).

D. D. Nolte, J. Appl. Phys. 85, 6259 (1999).
[CrossRef]

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 4, 332 (1998).
[CrossRef]

D. D. Nolte and K. M. Kwolek, Opt. Commun. 115, 606 (1995).
[CrossRef]

K. M. Kwolek, M. R. Melloch, D. D. Nolte, and G. A. Brost, Appl. Phys. Lett. 67, 736 (1995).
[CrossRef]

Parry, G.

A. K. Tipping, G. Parry, and A. J. Moseley, Semicond. Sci. Technol. 5, 525 (1990).
[CrossRef]

Plantegenest, M-T.

G. Roosen and M-T. Plantegenest, J. Opt. 14, 199 (1983).
[CrossRef]

Psaltis, D.

G. Steckman, R. Bittner, K. Meerholz, and D. Psaltis, Opt. Commun. 185, 13 (2000).
[CrossRef]

Roosen, G.

G. Roosen and M-T. Plantegenest, J. Opt. 14, 199 (1983).
[CrossRef]

Steckman, G.

G. Steckman, R. Bittner, K. Meerholz, and D. Psaltis, Opt. Commun. 185, 13 (2000).
[CrossRef]

Streetman, B.

D. D. Nolte, K. M. Kwolek, C. Lenox, and B. Streetman, J. Opt. Soc. Am. B 18, 3 (2001).

Tipping, A. K.

A. K. Tipping, G. Parry, and A. J. Moseley, Semicond. Sci. Technol. 5, 525 (1990).
[CrossRef]

Weiner, A. M.

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 4, 332 (1998).
[CrossRef]

Zaquine, I.

Appl. Phys. B (1)

M. C. Barbosa, L. Mosquera, and J. Frejlich, Appl. Phys. B 72, 717 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

K. M. Kwolek, M. R. Melloch, D. D. Nolte, and G. A. Brost, Appl. Phys. Lett. 67, 736 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, IEEE J. Sel. Top. Quantum Electron. 4, 332 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. S. Gerber, R. Droopad, and G. N. Maracas, IEEE Photon. Technol. Lett. 5, 55 (1993).
[CrossRef]

J. Appl. Phys. (1)

D. D. Nolte, J. Appl. Phys. 85, 6259 (1999).
[CrossRef]

J. Opt. (1)

G. Roosen and M-T. Plantegenest, J. Opt. 14, 199 (1983).
[CrossRef]

J. Opt. Soc. Am. B (1)

D. D. Nolte, K. M. Kwolek, C. Lenox, and B. Streetman, J. Opt. Soc. Am. B 18, 3 (2001).

Opt. Commun. (3)

M. J. Damzen, R. P. M. Green, and G. J. Crofts, Opt. Commun. 110, 152 (1994).
[CrossRef]

G. Steckman, R. Bittner, K. Meerholz, and D. Psaltis, Opt. Commun. 185, 13 (2000).
[CrossRef]

D. D. Nolte and K. M. Kwolek, Opt. Commun. 115, 606 (1995).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (1)

S. Kessel, Opt. Spectrosc. 96, 163 (2004).
[CrossRef]

Phys. Rev. B (1)

F. R. Bacher, J. S. Blakemore, J. T. Ebner, and J. R. Arthur, Phys. Rev. B 37, 2551 (1988).
[CrossRef]

Semicond. Sci. Technol. (1)

A. K. Tipping, G. Parry, and A. J. Moseley, Semicond. Sci. Technol. 5, 525 (1990).
[CrossRef]

Other (3)

H. Haug and S. W. Kock, Quantum Theory of the Optical and Electronic Properties of Semiconductor, 4th ed. (World Scientific, 2004), Chap. 5.4.

E. Hecht, Optics (Addison-Wesley, 2001), Chap. 9.7.

C. W. Thiel, “Four-wave mixing and its applications,” http://www.physics.montana.edu/students/thiel/docs/FWMixing.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Holographic cavity device structure. The cavity consists of 8 periods of In0.53Ga0.47As/InP with thicknesses 8.5nm/235.3nm. The DBR consists of 21 layers of In0.72Ga0.28As0.6P0.4/InP with thicknesses 111.7nm/122.2nm. The amorphous mirror consists of four layers of Si/SiO2. (b) Four-wave mixing geometry in a modified Michelson interferometer. The fringe spacing is approximately 30 μm. The cavity is pumped through the amorphous mirror and probed through the DBR.

Fig. 2.
Fig. 2.

(a) Intradevice pump intensity and (b) intradevice probe intensity relative to incident intensity. The quantum wells are centered on the bright interference fringes of the probe intensity. (c) Calculated reflection spectra for pumped and unpumped conditions, and the calculated phase shift versus wavelength. (d) Calculated reflectance and diffraction efficiency near 1550 nm wavelength as a function of pumped carrier density assuming 100% grating contrast. The reflectance exceeds unity at carrier densities above 1018cm3.

Fig. 3.
Fig. 3.

(a) Reflected intensity versus time at λ=1546nm and (b) diffracted intensity versus time at λ=1542nm. Risetime of the device is less than 5 ns. (c) Reflectance and diffraction efficiency versus wavelength under optimal pumped conditions. The fringe spacing was 30 μm. The probe is incident at 7 deg from the normal. The fringes are residual Fabry–Perot fringes from the substrate. The smooth solid curves are the calculated performance.

Tables (1)

Tables Icon

Table 1. Device Properties

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R=B+Fsin2ϕ1+Fsin2ϕ,
B=Rf[1(Rα/Rf)]2/(1Rα)2,
F=4Rα/(1Rα)2
Rα=RfRbeαd,
Q=fΔf=λΔλ260,

Metrics