Abstract

We report on InP-based p-type/intrinsic/n-type (PIN) photodiodes with a novel strain-compensated type-II InGaAs/GaAsSb quantum well active region. The device has optical response out to 3.0 μm, specific detectivity (D*) of 7.73×109cmHz0.5/W at 290 K for 2.7 μm. These preliminary results show that this novel strain-compensated approach leads to similar performance when compared to a conventional strain-compensated approach.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Lei and C. Jagadish, J. Appl. Phys. 104, 091101 (2008).
  2. G. T. Dobbs, B. Balu, C. Young, C. Kranz, D. W. Hess, and B. Mizaikoff, Anal. Chem. 79, 9566 (2007).
    [CrossRef]
  3. H. I. Schiff, G. I. Mackay, and S. D. Nadler, Infrared Phys. Technol. 37, 39 (1996).
    [CrossRef]
  4. R. Sidhu, N. Duan, J. C. Campbell, and A. L. Holmes, IEEE Photon. Technol. Lett. 17, 2715 (2005).
    [CrossRef]
  5. H. Inada, K. Miura, Y. Nagai, M. Tsubokura, A. Moto, Y. Iguchi, and Y. Kawamura, “Low dark current SWIR photodiode with InGaAs/GaAsSb type II quantum wells grown on InP substrate,” presented at the Indium Phosphide & Related Materials, Newport Beach, CA, 10–14 May2009.
  6. R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C. F. Hsu, and M. A. Itzler, Electron. Lett. 42, 181 (2006).
    [CrossRef]
  7. D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, IEEE Trans. Electron Devices 58, 486 (2011).
    [CrossRef]
  8. B. Chen, W. Y. Jiang, and A. L. Holmes, Opt. Quantum Electron. 44, 103 (2012).
    [CrossRef]
  9. B. Chen and A. L. Holmes, Opt. Quantum Electron. 45, 127 (2013).
    [CrossRef]
  10. B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, IEEE Photon. Technol. Lett. 23, 218 (2011).
    [CrossRef]
  11. B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, IEEE J. Quantum Electron. 47, 1244 (2011).
  12. S. Weeke, M. Leyer, M. Pristovsek, F. Brunner, M. Weyers, and W. Richter, J. Cryst. Growth 298, 159 (2007).
    [CrossRef]
  13. B. Chen, J. Yuan, and A. L. Holmes, Opt. Quantum Electron. 45, 271 (2013).
    [CrossRef]
  14. A. M. Hoang, G. Chen, A. Haddadi, S. A. Pour, and M. Razeghi, Appl. Phys. Lett. 100, 211101 (2012).
    [CrossRef]
  15. C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Li, Infrared Phys. Technol. 53, 173 (2010).
    [CrossRef]
  16. J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 043514 (2007).
    [CrossRef]

2013 (2)

B. Chen and A. L. Holmes, Opt. Quantum Electron. 45, 127 (2013).
[CrossRef]

B. Chen, J. Yuan, and A. L. Holmes, Opt. Quantum Electron. 45, 271 (2013).
[CrossRef]

2012 (2)

A. M. Hoang, G. Chen, A. Haddadi, S. A. Pour, and M. Razeghi, Appl. Phys. Lett. 100, 211101 (2012).
[CrossRef]

B. Chen, W. Y. Jiang, and A. L. Holmes, Opt. Quantum Electron. 44, 103 (2012).
[CrossRef]

2011 (3)

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, IEEE Trans. Electron Devices 58, 486 (2011).
[CrossRef]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, IEEE Photon. Technol. Lett. 23, 218 (2011).
[CrossRef]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, IEEE J. Quantum Electron. 47, 1244 (2011).

2010 (1)

C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Li, Infrared Phys. Technol. 53, 173 (2010).
[CrossRef]

2008 (1)

W. Lei and C. Jagadish, J. Appl. Phys. 104, 091101 (2008).

2007 (3)

G. T. Dobbs, B. Balu, C. Young, C. Kranz, D. W. Hess, and B. Mizaikoff, Anal. Chem. 79, 9566 (2007).
[CrossRef]

S. Weeke, M. Leyer, M. Pristovsek, F. Brunner, M. Weyers, and W. Richter, J. Cryst. Growth 298, 159 (2007).
[CrossRef]

J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 043514 (2007).
[CrossRef]

2006 (1)

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C. F. Hsu, and M. A. Itzler, Electron. Lett. 42, 181 (2006).
[CrossRef]

2005 (1)

R. Sidhu, N. Duan, J. C. Campbell, and A. L. Holmes, IEEE Photon. Technol. Lett. 17, 2715 (2005).
[CrossRef]

1996 (1)

H. I. Schiff, G. I. Mackay, and S. D. Nadler, Infrared Phys. Technol. 37, 39 (1996).
[CrossRef]

Balu, B.

G. T. Dobbs, B. Balu, C. Young, C. Kranz, D. W. Hess, and B. Mizaikoff, Anal. Chem. 79, 9566 (2007).
[CrossRef]

Bishop, G.

J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 043514 (2007).
[CrossRef]

Brunner, F.

S. Weeke, M. Leyer, M. Pristovsek, F. Brunner, M. Weyers, and W. Richter, J. Cryst. Growth 298, 159 (2007).
[CrossRef]

Campbell, J. C.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C. F. Hsu, and M. A. Itzler, Electron. Lett. 42, 181 (2006).
[CrossRef]

R. Sidhu, N. Duan, J. C. Campbell, and A. L. Holmes, IEEE Photon. Technol. Lett. 17, 2715 (2005).
[CrossRef]

Chen, B.

B. Chen, J. Yuan, and A. L. Holmes, Opt. Quantum Electron. 45, 271 (2013).
[CrossRef]

B. Chen and A. L. Holmes, Opt. Quantum Electron. 45, 127 (2013).
[CrossRef]

B. Chen, W. Y. Jiang, and A. L. Holmes, Opt. Quantum Electron. 44, 103 (2012).
[CrossRef]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, IEEE Photon. Technol. Lett. 23, 218 (2011).
[CrossRef]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, IEEE J. Quantum Electron. 47, 1244 (2011).

Chen, G.

A. M. Hoang, G. Chen, A. Haddadi, S. A. Pour, and M. Razeghi, Appl. Phys. Lett. 100, 211101 (2012).
[CrossRef]

David, J. P. R.

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, IEEE Trans. Electron Devices 58, 486 (2011).
[CrossRef]

Dawson, L. R.

J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 043514 (2007).
[CrossRef]

Dobbs, G. T.

G. T. Dobbs, B. Balu, C. Young, C. Kranz, D. W. Hess, and B. Mizaikoff, Anal. Chem. 79, 9566 (2007).
[CrossRef]

Duan, N.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C. F. Hsu, and M. A. Itzler, Electron. Lett. 42, 181 (2006).
[CrossRef]

R. Sidhu, N. Duan, J. C. Campbell, and A. L. Holmes, IEEE Photon. Technol. Lett. 17, 2715 (2005).
[CrossRef]

Goh, Y. L.

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, IEEE Trans. Electron Devices 58, 486 (2011).
[CrossRef]

Gu, Y.

C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Li, Infrared Phys. Technol. 53, 173 (2010).
[CrossRef]

Haddadi, A.

A. M. Hoang, G. Chen, A. Haddadi, S. A. Pour, and M. Razeghi, Appl. Phys. Lett. 100, 211101 (2012).
[CrossRef]

Hess, D. W.

G. T. Dobbs, B. Balu, C. Young, C. Kranz, D. W. Hess, and B. Mizaikoff, Anal. Chem. 79, 9566 (2007).
[CrossRef]

Hoang, A. M.

A. M. Hoang, G. Chen, A. Haddadi, S. A. Pour, and M. Razeghi, Appl. Phys. Lett. 100, 211101 (2012).
[CrossRef]

Holmes, A. L.

B. Chen and A. L. Holmes, Opt. Quantum Electron. 45, 127 (2013).
[CrossRef]

B. Chen, J. Yuan, and A. L. Holmes, Opt. Quantum Electron. 45, 271 (2013).
[CrossRef]

B. Chen, W. Y. Jiang, and A. L. Holmes, Opt. Quantum Electron. 44, 103 (2012).
[CrossRef]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, IEEE J. Quantum Electron. 47, 1244 (2011).

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, IEEE Photon. Technol. Lett. 23, 218 (2011).
[CrossRef]

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C. F. Hsu, and M. A. Itzler, Electron. Lett. 42, 181 (2006).
[CrossRef]

R. Sidhu, N. Duan, J. C. Campbell, and A. L. Holmes, IEEE Photon. Technol. Lett. 17, 2715 (2005).
[CrossRef]

Hsu, C. F.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C. F. Hsu, and M. A. Itzler, Electron. Lett. 42, 181 (2006).
[CrossRef]

Iguchi, Y.

H. Inada, K. Miura, Y. Nagai, M. Tsubokura, A. Moto, Y. Iguchi, and Y. Kawamura, “Low dark current SWIR photodiode with InGaAs/GaAsSb type II quantum wells grown on InP substrate,” presented at the Indium Phosphide & Related Materials, Newport Beach, CA, 10–14 May2009.

Inada, H.

H. Inada, K. Miura, Y. Nagai, M. Tsubokura, A. Moto, Y. Iguchi, and Y. Kawamura, “Low dark current SWIR photodiode with InGaAs/GaAsSb type II quantum wells grown on InP substrate,” presented at the Indium Phosphide & Related Materials, Newport Beach, CA, 10–14 May2009.

Itzler, M. A.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C. F. Hsu, and M. A. Itzler, Electron. Lett. 42, 181 (2006).
[CrossRef]

Jagadish, C.

W. Lei and C. Jagadish, J. Appl. Phys. 104, 091101 (2008).

Jiang, W.

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, IEEE J. Quantum Electron. 47, 1244 (2011).

Jiang, W. Y.

B. Chen, W. Y. Jiang, and A. L. Holmes, Opt. Quantum Electron. 44, 103 (2012).
[CrossRef]

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, IEEE Photon. Technol. Lett. 23, 218 (2011).
[CrossRef]

Kawamura, Y.

H. Inada, K. Miura, Y. Nagai, M. Tsubokura, A. Moto, Y. Iguchi, and Y. Kawamura, “Low dark current SWIR photodiode with InGaAs/GaAsSb type II quantum wells grown on InP substrate,” presented at the Indium Phosphide & Related Materials, Newport Beach, CA, 10–14 May2009.

Kim, H.

J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 043514 (2007).
[CrossRef]

Kranz, C.

G. T. Dobbs, B. Balu, C. Young, C. Kranz, D. W. Hess, and B. Mizaikoff, Anal. Chem. 79, 9566 (2007).
[CrossRef]

Krishna, S.

J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 043514 (2007).
[CrossRef]

Lei, W.

W. Lei and C. Jagadish, J. Appl. Phys. 104, 091101 (2008).

Leyer, M.

S. Weeke, M. Leyer, M. Pristovsek, F. Brunner, M. Weyers, and W. Richter, J. Cryst. Growth 298, 159 (2007).
[CrossRef]

Li, C.

C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Li, Infrared Phys. Technol. 53, 173 (2010).
[CrossRef]

Li, H.

C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Li, Infrared Phys. Technol. 53, 173 (2010).
[CrossRef]

Li, Y.

C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Li, Infrared Phys. Technol. 53, 173 (2010).
[CrossRef]

Mackay, G. I.

H. I. Schiff, G. I. Mackay, and S. D. Nadler, Infrared Phys. Technol. 37, 39 (1996).
[CrossRef]

Miura, K.

H. Inada, K. Miura, Y. Nagai, M. Tsubokura, A. Moto, Y. Iguchi, and Y. Kawamura, “Low dark current SWIR photodiode with InGaAs/GaAsSb type II quantum wells grown on InP substrate,” presented at the Indium Phosphide & Related Materials, Newport Beach, CA, 10–14 May2009.

Mizaikoff, B.

G. T. Dobbs, B. Balu, C. Young, C. Kranz, D. W. Hess, and B. Mizaikoff, Anal. Chem. 79, 9566 (2007).
[CrossRef]

Moto, A.

H. Inada, K. Miura, Y. Nagai, M. Tsubokura, A. Moto, Y. Iguchi, and Y. Kawamura, “Low dark current SWIR photodiode with InGaAs/GaAsSb type II quantum wells grown on InP substrate,” presented at the Indium Phosphide & Related Materials, Newport Beach, CA, 10–14 May2009.

Nadler, S. D.

H. I. Schiff, G. I. Mackay, and S. D. Nadler, Infrared Phys. Technol. 37, 39 (1996).
[CrossRef]

Nagai, Y.

H. Inada, K. Miura, Y. Nagai, M. Tsubokura, A. Moto, Y. Iguchi, and Y. Kawamura, “Low dark current SWIR photodiode with InGaAs/GaAsSb type II quantum wells grown on InP substrate,” presented at the Indium Phosphide & Related Materials, Newport Beach, CA, 10–14 May2009.

Ng, J. S.

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, IEEE Trans. Electron Devices 58, 486 (2011).
[CrossRef]

Onat, B. M.

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, IEEE Photon. Technol. Lett. 23, 218 (2011).
[CrossRef]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, IEEE J. Quantum Electron. 47, 1244 (2011).

Ong, D. S. G.

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, IEEE Trans. Electron Devices 58, 486 (2011).
[CrossRef]

Plis, E.

J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 043514 (2007).
[CrossRef]

Pour, S. A.

A. M. Hoang, G. Chen, A. Haddadi, S. A. Pour, and M. Razeghi, Appl. Phys. Lett. 100, 211101 (2012).
[CrossRef]

Pristovsek, M.

S. Weeke, M. Leyer, M. Pristovsek, F. Brunner, M. Weyers, and W. Richter, J. Cryst. Growth 298, 159 (2007).
[CrossRef]

Razeghi, M.

A. M. Hoang, G. Chen, A. Haddadi, S. A. Pour, and M. Razeghi, Appl. Phys. Lett. 100, 211101 (2012).
[CrossRef]

Richter, W.

S. Weeke, M. Leyer, M. Pristovsek, F. Brunner, M. Weyers, and W. Richter, J. Cryst. Growth 298, 159 (2007).
[CrossRef]

Rodriguez, J. B.

J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 043514 (2007).
[CrossRef]

Schiff, H. I.

H. I. Schiff, G. I. Mackay, and S. D. Nadler, Infrared Phys. Technol. 37, 39 (1996).
[CrossRef]

Sharma, Y. D.

J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 043514 (2007).
[CrossRef]

Sidhu, R.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C. F. Hsu, and M. A. Itzler, Electron. Lett. 42, 181 (2006).
[CrossRef]

R. Sidhu, N. Duan, J. C. Campbell, and A. L. Holmes, IEEE Photon. Technol. Lett. 17, 2715 (2005).
[CrossRef]

Tan, C. H.

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, IEEE Trans. Electron Devices 58, 486 (2011).
[CrossRef]

Tan, N.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C. F. Hsu, and M. A. Itzler, Electron. Lett. 42, 181 (2006).
[CrossRef]

Tsubokura, M.

H. Inada, K. Miura, Y. Nagai, M. Tsubokura, A. Moto, Y. Iguchi, and Y. Kawamura, “Low dark current SWIR photodiode with InGaAs/GaAsSb type II quantum wells grown on InP substrate,” presented at the Indium Phosphide & Related Materials, Newport Beach, CA, 10–14 May2009.

Wang, K.

C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Li, Infrared Phys. Technol. 53, 173 (2010).
[CrossRef]

Weeke, S.

S. Weeke, M. Leyer, M. Pristovsek, F. Brunner, M. Weyers, and W. Richter, J. Cryst. Growth 298, 159 (2007).
[CrossRef]

Weyers, M.

S. Weeke, M. Leyer, M. Pristovsek, F. Brunner, M. Weyers, and W. Richter, J. Cryst. Growth 298, 159 (2007).
[CrossRef]

Young, C.

G. T. Dobbs, B. Balu, C. Young, C. Kranz, D. W. Hess, and B. Mizaikoff, Anal. Chem. 79, 9566 (2007).
[CrossRef]

Yuan, J.

B. Chen, J. Yuan, and A. L. Holmes, Opt. Quantum Electron. 45, 271 (2013).
[CrossRef]

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, IEEE J. Quantum Electron. 47, 1244 (2011).

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, IEEE Photon. Technol. Lett. 23, 218 (2011).
[CrossRef]

Zhang, L.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C. F. Hsu, and M. A. Itzler, Electron. Lett. 42, 181 (2006).
[CrossRef]

Zhang, S.

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, IEEE Trans. Electron Devices 58, 486 (2011).
[CrossRef]

Zhang, Y.

C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Li, Infrared Phys. Technol. 53, 173 (2010).
[CrossRef]

Anal. Chem. (1)

G. T. Dobbs, B. Balu, C. Young, C. Kranz, D. W. Hess, and B. Mizaikoff, Anal. Chem. 79, 9566 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

A. M. Hoang, G. Chen, A. Haddadi, S. A. Pour, and M. Razeghi, Appl. Phys. Lett. 100, 211101 (2012).
[CrossRef]

J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 043514 (2007).
[CrossRef]

Electron. Lett. (1)

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, C. F. Hsu, and M. A. Itzler, Electron. Lett. 42, 181 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. Chen, W. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, IEEE J. Quantum Electron. 47, 1244 (2011).

IEEE Photon. Technol. Lett. (2)

B. Chen, W. Y. Jiang, J. Yuan, A. L. Holmes, and B. M. Onat, IEEE Photon. Technol. Lett. 23, 218 (2011).
[CrossRef]

R. Sidhu, N. Duan, J. C. Campbell, and A. L. Holmes, IEEE Photon. Technol. Lett. 17, 2715 (2005).
[CrossRef]

IEEE Trans. Electron Devices (1)

D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, IEEE Trans. Electron Devices 58, 486 (2011).
[CrossRef]

Infrared Phys. Technol. (2)

H. I. Schiff, G. I. Mackay, and S. D. Nadler, Infrared Phys. Technol. 37, 39 (1996).
[CrossRef]

C. Li, Y. Zhang, K. Wang, Y. Gu, H. Li, and Y. Li, Infrared Phys. Technol. 53, 173 (2010).
[CrossRef]

J. Appl. Phys. (1)

W. Lei and C. Jagadish, J. Appl. Phys. 104, 091101 (2008).

J. Cryst. Growth (1)

S. Weeke, M. Leyer, M. Pristovsek, F. Brunner, M. Weyers, and W. Richter, J. Cryst. Growth 298, 159 (2007).
[CrossRef]

Opt. Quantum Electron. (3)

B. Chen, J. Yuan, and A. L. Holmes, Opt. Quantum Electron. 45, 271 (2013).
[CrossRef]

B. Chen, W. Y. Jiang, and A. L. Holmes, Opt. Quantum Electron. 44, 103 (2012).
[CrossRef]

B. Chen and A. L. Holmes, Opt. Quantum Electron. 45, 127 (2013).
[CrossRef]

Other (1)

H. Inada, K. Miura, Y. Nagai, M. Tsubokura, A. Moto, Y. Iguchi, and Y. Kawamura, “Low dark current SWIR photodiode with InGaAs/GaAsSb type II quantum wells grown on InP substrate,” presented at the Indium Phosphide & Related Materials, Newport Beach, CA, 10–14 May2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Structure of conventional strain-compensated MQWs and (b) the structure of alternate strain-compensated MQWs.

Fig. 2.
Fig. 2.

Calculation of the transition wavelength versus Sb composition of 5 nm InGaAs/5 nm GaAsSb type-II QW with difference net compressive strain at 290 K.

Fig. 3.
Fig. 3.

Schematic diagram for an experimental designed PIN photodiode structure with 20 periods of 3.4 nm In0.2Ga0.8As/5nm In0.75Ga0.25As/5nm GaAs0.35Sb0.65/5nm In0.75Ga0.25As/3.4nm In0.2Ga0.8As as the absorption region.

Fig. 4.
Fig. 4.

Dark current density versus voltage for a 130 μm device measured at different temperatures.

Fig. 5.
Fig. 5.

Arrhenius plots of the dark current at 0.5V and the R0A product for the 130 μm device.

Fig. 6.
Fig. 6.

Normal incident photo response of the device at different temperatures (a) with no reverse bias and (b) with 0.5 V reverse bias.

Fig. 7.
Fig. 7.

Johnson noise and shot noise limited detectivity as functions of the temperature at bias of 0 and 0.5V.

Fig. 8.
Fig. 8.

Johnson noise and shot noise limited detectivity of a new strain-compensated device at 0 V, 290 K, compared with that of a conventional-strain compensated device at 0.5V, 290 K

Tables (1)

Tables Icon

Table 1. Comparison between the Performances of Difference Photodiodes

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D*=R2qI/Ad+4kT/(RdAd),

Metrics