Abstract

We present a scheme to generate a 10 GHz optical frequency comb that is bandwidth reconfigurable on a time scale of tens of nanoseconds via electronic control of the drive signal to a phase modulator. When such a comb is used as the source for a radio-frequency (RF) photonic filter employing dispersive propagation, the RF filter bandwidth varies in inverse proportion to the optical bandwidth. As a result we are able to demonstrate, for the first time to our knowledge, bandwidth-reconfigurable RF filtering with transition times under 20 ns. The reconfiguration speed is determined by the response time of a programmable RF variable attenuator.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and K. J. Williams, J. Lightwave Technol. 24, 4628 (2006).
    [CrossRef]
  2. J. Capmany, B. Ortega, and D. Pastor, J. Lightwave Technol. 24, 201 (2006).
    [CrossRef]
  3. J. Yao, J. Lightwave Technol. 27, 314 (2009).
    [CrossRef]
  4. E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 58, 3269 (2010).
    [CrossRef]
  5. V. R. Supradeepa, C. Long, R. Wu, F. Ferdous, E. Hamidi, D. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
    [CrossRef]
  6. Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
    [CrossRef]
  7. A. D. Ellis and F. C. G. Gunning, IEEE Photon. Technol. Lett. 17, 504 (2005).
    [CrossRef]
  8. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, and I. Hosako, Opt. Lett. 34, 2297 (2009).
    [CrossRef]
  9. A. M. Clarke, D. G. Williams, M. A. F. Roelens, and B. J. Eggleton, IEEE Photon. Technol. Lett. 28, 97 (2010).
  10. R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 24, 1484 (2012).
    [CrossRef]
  11. C.-B. Huang, D. E. Leaird, and A. M. Weiner, Opt. Lett. 32, 3242 (2007).
    [CrossRef]
  12. M. Sánchez-Renedo, R. Gómez-Garcia, J. I. Alonso, and C. Briso-Rodriguez, IEEE Trans. Microwave Theory Tech. 53, 191 (2005).
    [CrossRef]
  13. H. Joshi, H. H. Sigmarsson, S. Moon, D. Peroulis, and W. J. Chappell, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2009), pp. 629–632.
  14. C. H. Kim and K. Chang, IEEE Trans. Microwave Theory Tech. 58, 3936 (2010).
  15. X. Huang, Q. Feng, and Q. Xiang, IEEE Trans. Microw. Wirel. Compon. Lett. 22, 176 (2012).
  16. A. Serrano, F. S. Correra, T. Vuong, and P. Ferrari, IEEE Trans. Microwave Theory Tech. 60, 484 (2012).
    [CrossRef]
  17. V. Torres-Company, J. Lancis, and P. Andrés, Opt. Lett. 33, 1822 (2008).
    [CrossRef]
  18. J. Azana, Opt. Commun. 217, 205 (2003).
    [CrossRef]
  19. J. Howe and C. Xu, J. Lightwave Technol. 24, 2649 (2006).
    [CrossRef]
  20. E. Hamidi, R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Tunable radio frequency photonic filter based on intensity modulation of optical combs,” presented at the International Meeting on Microwave Photonics, Montreal, Quebec, Canada, October5–9, 2010.

2012 (4)

V. R. Supradeepa, C. Long, R. Wu, F. Ferdous, E. Hamidi, D. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
[CrossRef]

X. Huang, Q. Feng, and Q. Xiang, IEEE Trans. Microw. Wirel. Compon. Lett. 22, 176 (2012).

A. Serrano, F. S. Correra, T. Vuong, and P. Ferrari, IEEE Trans. Microwave Theory Tech. 60, 484 (2012).
[CrossRef]

R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 24, 1484 (2012).
[CrossRef]

2010 (3)

C. H. Kim and K. Chang, IEEE Trans. Microwave Theory Tech. 58, 3936 (2010).

A. M. Clarke, D. G. Williams, M. A. F. Roelens, and B. J. Eggleton, IEEE Photon. Technol. Lett. 28, 97 (2010).

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 58, 3269 (2010).
[CrossRef]

2009 (2)

2008 (1)

2007 (2)

C.-B. Huang, D. E. Leaird, and A. M. Weiner, Opt. Lett. 32, 3242 (2007).
[CrossRef]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

2006 (3)

2005 (2)

M. Sánchez-Renedo, R. Gómez-Garcia, J. I. Alonso, and C. Briso-Rodriguez, IEEE Trans. Microwave Theory Tech. 53, 191 (2005).
[CrossRef]

A. D. Ellis and F. C. G. Gunning, IEEE Photon. Technol. Lett. 17, 504 (2005).
[CrossRef]

2003 (1)

J. Azana, Opt. Commun. 217, 205 (2003).
[CrossRef]

Alonso, J. I.

M. Sánchez-Renedo, R. Gómez-Garcia, J. I. Alonso, and C. Briso-Rodriguez, IEEE Trans. Microwave Theory Tech. 53, 191 (2005).
[CrossRef]

Andrés, P.

Azana, J.

J. Azana, Opt. Commun. 217, 205 (2003).
[CrossRef]

Briso-Rodriguez, C.

M. Sánchez-Renedo, R. Gómez-Garcia, J. I. Alonso, and C. Briso-Rodriguez, IEEE Trans. Microwave Theory Tech. 53, 191 (2005).
[CrossRef]

Capmany, J.

Chang, K.

C. H. Kim and K. Chang, IEEE Trans. Microwave Theory Tech. 58, 3936 (2010).

Chappell, W. J.

H. Joshi, H. H. Sigmarsson, S. Moon, D. Peroulis, and W. J. Chappell, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2009), pp. 629–632.

Clarke, A. M.

A. M. Clarke, D. G. Williams, M. A. F. Roelens, and B. J. Eggleton, IEEE Photon. Technol. Lett. 28, 97 (2010).

Correra, F. S.

A. Serrano, F. S. Correra, T. Vuong, and P. Ferrari, IEEE Trans. Microwave Theory Tech. 60, 484 (2012).
[CrossRef]

Eggleton, B. J.

A. M. Clarke, D. G. Williams, M. A. F. Roelens, and B. J. Eggleton, IEEE Photon. Technol. Lett. 28, 97 (2010).

Ellis, A. D.

A. D. Ellis and F. C. G. Gunning, IEEE Photon. Technol. Lett. 17, 504 (2005).
[CrossRef]

Feng, Q.

X. Huang, Q. Feng, and Q. Xiang, IEEE Trans. Microw. Wirel. Compon. Lett. 22, 176 (2012).

Ferdous, F.

V. R. Supradeepa, C. Long, R. Wu, F. Ferdous, E. Hamidi, D. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
[CrossRef]

Ferrari, P.

A. Serrano, F. S. Correra, T. Vuong, and P. Ferrari, IEEE Trans. Microwave Theory Tech. 60, 484 (2012).
[CrossRef]

Gómez-Garcia, R.

M. Sánchez-Renedo, R. Gómez-Garcia, J. I. Alonso, and C. Briso-Rodriguez, IEEE Trans. Microwave Theory Tech. 53, 191 (2005).
[CrossRef]

Gunning, F. C. G.

A. D. Ellis and F. C. G. Gunning, IEEE Photon. Technol. Lett. 17, 504 (2005).
[CrossRef]

Hamidi, E.

V. R. Supradeepa, C. Long, R. Wu, F. Ferdous, E. Hamidi, D. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 58, 3269 (2010).
[CrossRef]

E. Hamidi, R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Tunable radio frequency photonic filter based on intensity modulation of optical combs,” presented at the International Meeting on Microwave Photonics, Montreal, Quebec, Canada, October5–9, 2010.

Hosako, I.

Howe, J.

Huang, C. B.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

Huang, C.-B.

Huang, X.

X. Huang, Q. Feng, and Q. Xiang, IEEE Trans. Microw. Wirel. Compon. Lett. 22, 176 (2012).

Jiang, Z.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

Joshi, H.

H. Joshi, H. H. Sigmarsson, S. Moon, D. Peroulis, and W. J. Chappell, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2009), pp. 629–632.

Kawanishi, T.

Kim, C. H.

C. H. Kim and K. Chang, IEEE Trans. Microwave Theory Tech. 58, 3936 (2010).

Lancis, J.

Leaird, D.

V. R. Supradeepa, C. Long, R. Wu, F. Ferdous, E. Hamidi, D. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
[CrossRef]

Leaird, D. E.

R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 24, 1484 (2012).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 58, 3269 (2010).
[CrossRef]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

C.-B. Huang, D. E. Leaird, and A. M. Weiner, Opt. Lett. 32, 3242 (2007).
[CrossRef]

E. Hamidi, R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Tunable radio frequency photonic filter based on intensity modulation of optical combs,” presented at the International Meeting on Microwave Photonics, Montreal, Quebec, Canada, October5–9, 2010.

Long, C.

V. R. Supradeepa, C. Long, R. Wu, F. Ferdous, E. Hamidi, D. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
[CrossRef]

Long, C. M.

R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 24, 1484 (2012).
[CrossRef]

E. Hamidi, R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Tunable radio frequency photonic filter based on intensity modulation of optical combs,” presented at the International Meeting on Microwave Photonics, Montreal, Quebec, Canada, October5–9, 2010.

Moon, S.

H. Joshi, H. H. Sigmarsson, S. Moon, D. Peroulis, and W. J. Chappell, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2009), pp. 629–632.

Morohashi, I.

Ortega, B.

Pastor, D.

Peroulis, D.

H. Joshi, H. H. Sigmarsson, S. Moon, D. Peroulis, and W. J. Chappell, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2009), pp. 629–632.

Roelens, M. A. F.

A. M. Clarke, D. G. Williams, M. A. F. Roelens, and B. J. Eggleton, IEEE Photon. Technol. Lett. 28, 97 (2010).

Sakamoto, T.

Sánchez-Renedo, M.

M. Sánchez-Renedo, R. Gómez-Garcia, J. I. Alonso, and C. Briso-Rodriguez, IEEE Trans. Microwave Theory Tech. 53, 191 (2005).
[CrossRef]

Seeds, A. J.

Serrano, A.

A. Serrano, F. S. Correra, T. Vuong, and P. Ferrari, IEEE Trans. Microwave Theory Tech. 60, 484 (2012).
[CrossRef]

Sigmarsson, H. H.

H. Joshi, H. H. Sigmarsson, S. Moon, D. Peroulis, and W. J. Chappell, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2009), pp. 629–632.

Sotobayashi, H.

Supradeepa, V. R.

V. R. Supradeepa, C. Long, R. Wu, F. Ferdous, E. Hamidi, D. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
[CrossRef]

E. Hamidi, R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Tunable radio frequency photonic filter based on intensity modulation of optical combs,” presented at the International Meeting on Microwave Photonics, Montreal, Quebec, Canada, October5–9, 2010.

Torres-Company, V.

Vuong, T.

A. Serrano, F. S. Correra, T. Vuong, and P. Ferrari, IEEE Trans. Microwave Theory Tech. 60, 484 (2012).
[CrossRef]

Weiner, A. M.

V. R. Supradeepa, C. Long, R. Wu, F. Ferdous, E. Hamidi, D. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
[CrossRef]

R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 24, 1484 (2012).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 58, 3269 (2010).
[CrossRef]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

C.-B. Huang, D. E. Leaird, and A. M. Weiner, Opt. Lett. 32, 3242 (2007).
[CrossRef]

E. Hamidi, R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Tunable radio frequency photonic filter based on intensity modulation of optical combs,” presented at the International Meeting on Microwave Photonics, Montreal, Quebec, Canada, October5–9, 2010.

Williams, D. G.

A. M. Clarke, D. G. Williams, M. A. F. Roelens, and B. J. Eggleton, IEEE Photon. Technol. Lett. 28, 97 (2010).

Williams, K. J.

Wu, R.

R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 24, 1484 (2012).
[CrossRef]

V. R. Supradeepa, C. Long, R. Wu, F. Ferdous, E. Hamidi, D. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
[CrossRef]

E. Hamidi, R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Tunable radio frequency photonic filter based on intensity modulation of optical combs,” presented at the International Meeting on Microwave Photonics, Montreal, Quebec, Canada, October5–9, 2010.

Xiang, Q.

X. Huang, Q. Feng, and Q. Xiang, IEEE Trans. Microw. Wirel. Compon. Lett. 22, 176 (2012).

Xu, C.

Yao, J.

IEEE Photon. Technol. Lett. (3)

A. D. Ellis and F. C. G. Gunning, IEEE Photon. Technol. Lett. 17, 504 (2005).
[CrossRef]

A. M. Clarke, D. G. Williams, M. A. F. Roelens, and B. J. Eggleton, IEEE Photon. Technol. Lett. 28, 97 (2010).

R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 24, 1484 (2012).
[CrossRef]

IEEE Trans. Microw. Wirel. Compon. Lett. (1)

X. Huang, Q. Feng, and Q. Xiang, IEEE Trans. Microw. Wirel. Compon. Lett. 22, 176 (2012).

IEEE Trans. Microwave Theory Tech. (4)

A. Serrano, F. S. Correra, T. Vuong, and P. Ferrari, IEEE Trans. Microwave Theory Tech. 60, 484 (2012).
[CrossRef]

M. Sánchez-Renedo, R. Gómez-Garcia, J. I. Alonso, and C. Briso-Rodriguez, IEEE Trans. Microwave Theory Tech. 53, 191 (2005).
[CrossRef]

C. H. Kim and K. Chang, IEEE Trans. Microwave Theory Tech. 58, 3936 (2010).

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 58, 3269 (2010).
[CrossRef]

J. Lightwave Technol. (4)

Nat. Photonics (2)

V. R. Supradeepa, C. Long, R. Wu, F. Ferdous, E. Hamidi, D. Leaird, and A. M. Weiner, Nat. Photonics 6, 186 (2012).
[CrossRef]

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

Opt. Commun. (1)

J. Azana, Opt. Commun. 217, 205 (2003).
[CrossRef]

Opt. Lett. (3)

Other (2)

H. Joshi, H. H. Sigmarsson, S. Moon, D. Peroulis, and W. J. Chappell, in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2009), pp. 629–632.

E. Hamidi, R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Tunable radio frequency photonic filter based on intensity modulation of optical combs,” presented at the International Meeting on Microwave Photonics, Montreal, Quebec, Canada, October5–9, 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental scheme to implement bandwidth-reconfigurable RF photonics filtering based on optical bandwidth tunable optical frequency combs. CW, continuous wave; IM, intensity modulator; PM, phase modulator; PS, phase shifter; VA, RF variable attenuator; SSB, single-sideband modulator; DCF, dispersion-compensating fiber; AMP, optical amplifier; RF AMP, RF amplifier; PD, photodetector.

Fig. 2.
Fig. 2.

Simulation results of bandwidth-reconfigurable filter. (a) Optical frequency comb spectrum with 20 comb lines. (b) Optical frequency comb spectrum with 36 comb lines. (c) Calculated filter transfer functions with combs a and b, respectively.

Fig. 3.
Fig. 3.

Experimental results of the bandwidth-reconfigurable RF photonic filtering through the use of a programmable RF variable attenuator. (a) Optical frequency comb spectrum with the variable attenuator switched “ON”. (b) Optical frequency comb spectrum with the variable attenuator switched “OFF”. (c) Measured RF filter transfer functions with comb a (attenuator switched “ON”) and comb b (attenuator switched “OFF”). Nearly a factor of 2 change in RF bandwidth is observed.

Fig. 4.
Fig. 4.

Experimental characterization of RF bandwidth reconfiguration in both time and frequency domains by switching the attenuator “ON” and “OFF”. Frequency domain data are obtained by using an RF spectrum analyzer. Time domain data are obtained by using a real-time oscilloscope. (a), (b) Switched “ON”: (a) output RF spectrum showing the two RF frequency tones at 7.9 and 8.4 GHz have approximately equal power; (b) output time domain RF waveform. (c), (d) Switched “OFF”: (c) output RF spectrum showing the two RF frequency tones at 7.9 and 8.4 GHz have >10dB power difference; (d) output time domain RF waveform.

Fig. 5.
Fig. 5.

Experimental results showing rapid RF bandwidth reconfigurability. (a) Measured oscilloscope signal at filter output. (b), (c) Close-ups of the output waveform with (b) attenuator “OFF” and (c) attenuator “ON”. (d) Spectrogram representation of the output filtered signal. (e), (f) Close-ups of the spectrogram at (e) rising and (f) falling edges of the spectrogram feature at 8.4 GHz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H(ωRF)n=0n=N1|en|2ejnD2πΔfωRF,

Metrics