Abstract

Coupling of a far-field optical mode to electronic states of a quantum absorber or emitter is a crucial process in many applications, including infrared sensors, single molecule spectroscopy, and quantum metrology. In particular, achieving high quantum efficiency for a system with a deep subwavelength quantum absorber/emitter has remained desirable. In this Letter, a hybrid optical antenna based on coupling of a photonic nanojet to a metallo-dielectric antenna is proposed, which allows such efficient coupling. A quantum efficiency of about 50% is predicted for a semiconductor with volume of λ3/170. Despite the weak optical absorption coefficient of 2000cm1 in the long infrared wavelength of 8μm, very strong far-field coupling has been achieved, as evidenced by an axial directivity gain of 16 dB, which is only 3 dB below of theoretical limit. Unlike the common phased array antenna, this structure does not require coherent sources to achieve a high directivity. The quantum efficiency and directivity gain are more than an order of magnitude higher than existing metallic, dielectric, or metallo-dielectric optical antenna.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. V. Polyakov and A. L. Migdall, J. Mod. Opt. 56, 1045 (2009).
    [CrossRef]
  2. R. H. Hadfield, Nat. Photonics 3, 696 (2009).
    [CrossRef]
  3. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, Nano Lett. 7, 2871 (2007).
    [CrossRef]
  4. A. Bonakdar and H. Mohseni, Infrared Physics & Technology 59, 142 (2013).
  5. W. Wu, A. Bonakdar, and H. Mohseni, Appl. Phys. Lett. 96, 161107 (2010).
    [CrossRef]
  6. L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
    [CrossRef]
  7. R. F. Harrington, J. Res. Natl. Bur. Stand. 64, 1 (1960).
  8. M. Agio, Nanoscale 4, 692 (2012).
    [CrossRef]
  9. A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, J. Comput. Theor. Nanosci. 6, 1979 (2009).
    [CrossRef]
  10. W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, Nano. Res. Lett. 3, 123 (2008).
    [CrossRef]
  11. W. Wu, D. Dey, O. Memis, A. Katsnelson, and H. Mohseni, Nano. Res. Lett. 3, 351 (2008).
    [CrossRef]
  12. J. N. Damask, Polarization Optics in Telecommunications (Verlag, 2004), Vol. 101.
  13. A. Rogalski, Prog. Quantum Electron. 27, 59 (2003).
    [CrossRef]
  14. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, Nat. Photonics 4, 395 (2010).
    [CrossRef]
  15. J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, Opt. Mater. Express 1, 259 (2011).
    [CrossRef]

2013 (1)

A. Bonakdar and H. Mohseni, Infrared Physics & Technology 59, 142 (2013).

2012 (1)

M. Agio, Nanoscale 4, 692 (2012).
[CrossRef]

2011 (2)

2010 (2)

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, Nat. Photonics 4, 395 (2010).
[CrossRef]

W. Wu, A. Bonakdar, and H. Mohseni, Appl. Phys. Lett. 96, 161107 (2010).
[CrossRef]

2009 (3)

S. V. Polyakov and A. L. Migdall, J. Mod. Opt. 56, 1045 (2009).
[CrossRef]

R. H. Hadfield, Nat. Photonics 3, 696 (2009).
[CrossRef]

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, J. Comput. Theor. Nanosci. 6, 1979 (2009).
[CrossRef]

2008 (2)

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, Nano. Res. Lett. 3, 123 (2008).
[CrossRef]

W. Wu, D. Dey, O. Memis, A. Katsnelson, and H. Mohseni, Nano. Res. Lett. 3, 351 (2008).
[CrossRef]

2007 (1)

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, Nano Lett. 7, 2871 (2007).
[CrossRef]

2003 (1)

A. Rogalski, Prog. Quantum Electron. 27, 59 (2003).
[CrossRef]

1960 (1)

R. F. Harrington, J. Res. Natl. Bur. Stand. 64, 1 (1960).

Agio, M.

M. Agio, Nanoscale 4, 692 (2012).
[CrossRef]

Backman, V.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, J. Comput. Theor. Nanosci. 6, 1979 (2009).
[CrossRef]

Boiko, D. L.

Bonakdar, A.

A. Bonakdar and H. Mohseni, Infrared Physics & Technology 59, 142 (2013).

W. Wu, A. Bonakdar, and H. Mohseni, Appl. Phys. Lett. 96, 161107 (2010).
[CrossRef]

Bondarenko, O.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, Nat. Photonics 4, 395 (2010).
[CrossRef]

Brauer, N. B.

Brugger, J.

Charbon, E.

Damask, J. N.

J. N. Damask, Polarization Optics in Telecommunications (Verlag, 2004), Vol. 101.

Dey, D.

W. Wu, D. Dey, O. Memis, A. Katsnelson, and H. Mohseni, Nano. Res. Lett. 3, 351 (2008).
[CrossRef]

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, Nano. Res. Lett. 3, 123 (2008).
[CrossRef]

Fainman, Y.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, Nat. Photonics 4, 395 (2010).
[CrossRef]

Fakhfouri, V.

Feng, L.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, Nat. Photonics 4, 395 (2010).
[CrossRef]

Giannini, V.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, Nano Lett. 7, 2871 (2007).
[CrossRef]

Gómez Rivas, J.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, Nano Lett. 7, 2871 (2007).
[CrossRef]

Grutzner, G.

Hadfield, R. H.

R. H. Hadfield, Nat. Photonics 3, 696 (2009).
[CrossRef]

Harrington, R. F.

R. F. Harrington, J. Res. Natl. Bur. Stand. 64, 1 (1960).

Heifetz, A.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, J. Comput. Theor. Nanosci. 6, 1979 (2009).
[CrossRef]

Katsnelson, A.

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, Nano. Res. Lett. 3, 123 (2008).
[CrossRef]

W. Wu, D. Dey, O. Memis, A. Katsnelson, and H. Mohseni, Nano. Res. Lett. 3, 351 (2008).
[CrossRef]

Kim, J. Y.

Kong, S.-C.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, J. Comput. Theor. Nanosci. 6, 1979 (2009).
[CrossRef]

Lomakin, V.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, Nat. Photonics 4, 395 (2010).
[CrossRef]

Memis, O.

W. Wu, D. Dey, O. Memis, A. Katsnelson, and H. Mohseni, Nano. Res. Lett. 3, 351 (2008).
[CrossRef]

Memis, O. G.

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, Nano. Res. Lett. 3, 123 (2008).
[CrossRef]

Migdall, A. L.

S. V. Polyakov and A. L. Migdall, J. Mod. Opt. 56, 1045 (2009).
[CrossRef]

Mizrahi, A.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, Nat. Photonics 4, 395 (2010).
[CrossRef]

Mohseni, H.

A. Bonakdar and H. Mohseni, Infrared Physics & Technology 59, 142 (2013).

W. Wu, A. Bonakdar, and H. Mohseni, Appl. Phys. Lett. 96, 161107 (2010).
[CrossRef]

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, Nano. Res. Lett. 3, 123 (2008).
[CrossRef]

W. Wu, D. Dey, O. Memis, A. Katsnelson, and H. Mohseni, Nano. Res. Lett. 3, 351 (2008).
[CrossRef]

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, Nano Lett. 7, 2871 (2007).
[CrossRef]

Nezhad, M. P.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, Nat. Photonics 4, 395 (2010).
[CrossRef]

Novotny, L.

L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
[CrossRef]

Polyakov, S. V.

S. V. Polyakov and A. L. Migdall, J. Mod. Opt. 56, 1045 (2009).
[CrossRef]

Rogalski, A.

A. Rogalski, Prog. Quantum Electron. 27, 59 (2003).
[CrossRef]

Sahakian, A. V.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, J. Comput. Theor. Nanosci. 6, 1979 (2009).
[CrossRef]

Sánchez-Gil, J. A.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, Nano Lett. 7, 2871 (2007).
[CrossRef]

Simic, A.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, Nat. Photonics 4, 395 (2010).
[CrossRef]

Slutsky, B.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, Nat. Photonics 4, 395 (2010).
[CrossRef]

Taflove, A.

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, J. Comput. Theor. Nanosci. 6, 1979 (2009).
[CrossRef]

van Hulst, N.

L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
[CrossRef]

Wu, W.

W. Wu, A. Bonakdar, and H. Mohseni, Appl. Phys. Lett. 96, 161107 (2010).
[CrossRef]

W. Wu, D. Dey, O. Memis, A. Katsnelson, and H. Mohseni, Nano. Res. Lett. 3, 351 (2008).
[CrossRef]

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, Nano. Res. Lett. 3, 123 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

W. Wu, A. Bonakdar, and H. Mohseni, Appl. Phys. Lett. 96, 161107 (2010).
[CrossRef]

Infrared Physics & Technology (1)

A. Bonakdar and H. Mohseni, Infrared Physics & Technology 59, 142 (2013).

J. Comput. Theor. Nanosci. (1)

A. Heifetz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, J. Comput. Theor. Nanosci. 6, 1979 (2009).
[CrossRef]

J. Mod. Opt. (1)

S. V. Polyakov and A. L. Migdall, J. Mod. Opt. 56, 1045 (2009).
[CrossRef]

J. Res. Natl. Bur. Stand. (1)

R. F. Harrington, J. Res. Natl. Bur. Stand. 64, 1 (1960).

Nano Lett. (1)

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, Nano Lett. 7, 2871 (2007).
[CrossRef]

Nano. Res. Lett. (2)

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, Nano. Res. Lett. 3, 123 (2008).
[CrossRef]

W. Wu, D. Dey, O. Memis, A. Katsnelson, and H. Mohseni, Nano. Res. Lett. 3, 351 (2008).
[CrossRef]

Nanoscale (1)

M. Agio, Nanoscale 4, 692 (2012).
[CrossRef]

Nat. Photonics (3)

L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
[CrossRef]

R. H. Hadfield, Nat. Photonics 3, 696 (2009).
[CrossRef]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, Nat. Photonics 4, 395 (2010).
[CrossRef]

Opt. Mater. Express (1)

Prog. Quantum Electron. (1)

A. Rogalski, Prog. Quantum Electron. 27, 59 (2003).
[CrossRef]

Other (1)

J. N. Damask, Polarization Optics in Telecommunications (Verlag, 2004), Vol. 101.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the hybrid antenna (left) and cross sectional view of the microcavity part at y=0 plane (right). The origin of the coordinate coincides with the center of the microsphere. The cross section view is superimposed by the map of power flow (arrows of Poynting vectors scaled with their relative local strength) and normalized power consumption density (optical absorption density) throughout the cavity at the operating wavelength λ8μm. Despite the deep subdiffraction volume of λ3/170, the photonic nanojet power can efficiently reach into the cavity. The integral of the absorption density over the absorbing region gives the overall QE.

Fig. 2.
Fig. 2.

Normalized optical power spectrums (a) harvested by semiconductor absorber (QE) and (b) dissipated in metal versus different cavity heights. Hybrid antenna elevates QE to approximately 50% with moderate level of metal loss (less than 18%) at λ8μm. (c) Electric field intensity profile of the cavity mode (log-scale) at λ8μm with cavity height of 1 μm (first-order mode), (d) 3 μm (second-order mode), and (e) 5 μm (third-order mode). The field intensity is scaled from zero to unity.

Fig. 3.
Fig. 3.

(a) Effect of metallo-dielectric cavity and photonic nanojet on QE. The hybrid optical antenna has superior performance in terms of QE over the other conventional structures evaluated here. (b) Comparing directivity gain of antenna with and without microsphere antenna. Microsphere dielectric can enhance directivity gain near 22 dB (150 times) and to reach 3 dB below the theoretical limit.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η=PLPT=PLPL+PLoss,
D(θ,φ)=4πPL(θ,φ)dθdφPL(θ,φ),
G(θ,φ)=ηD(θ,φ).
Gmax=(ka)2+2ka,

Metrics