Abstract

We introduce a strategy to generate uniform illumination. The droplet pinned by a hydrophilic/superhydrophobic heterogeneous surface is oscillated, driven by a laterally placed loudspeaker. The vibrated droplet can be considered as a tunable lens, whose focus and focus length can be real-time tuned. The tunable “lens” is presented as a device for uniform illumination by mechanical manipulation. The incident light is scattered by the vibrated droplet during oscillation, and the irradiance distribution on the image plane becomes larger and more homogenous when the droplet is at resonance.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Wang, D. Wu, Z. Qin, F. Chen, X. B. Luo, and S. Liu, Opt. Express 19, A830 (2011).
    [CrossRef]
  2. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, Opt. Express 16, 12958 (2008).
    [CrossRef]
  3. Z. P. Su, D. L. Xue, and Z. C. Ji, Opt. Express 20, A843 (2012).
    [CrossRef]
  4. N. J. Shirtcliffe, G. McHale, and M. I. Newton, Langmuir 25, 14121 (2009).
    [CrossRef]
  5. T. S. Wong, S. H. Kang, K. Y. Sindy, J. S. Elizabeth, and D. H. Benjamin, Nature 477, 443 (2011).
    [CrossRef]
  6. S. Daniel, M. K. Chaudhury, and P. G. De Gennes, Langmuir 21, 4240 (2005).
    [CrossRef]
  7. C. A. Lopez and A. H. Hirsa, Nature 2, 610 (2008).
    [CrossRef]
  8. S. Daniel, S. Sircar, J. Gliem, and M. K. Chaudhury, Langmuir 20, 4085 (2004).
    [CrossRef]
  9. P. G. De Gennes, Rev. Mod. Phys. 57, 827 (1985).
    [CrossRef]
  10. H. Hu and R. G. Larson, J. Phys. Chem. B 106, 1334 (2002).
    [CrossRef]
  11. M. Perez, Y. Brechet, L. Salvo, M. Papoular, and M. Suery, Europhys. Lett. 47, 189 (1999).
    [CrossRef]
  12. X. Noblin, A. Buguin, and F. Brochard-Wyart, Eur. Phys. J. E 14, 395 (2004).
    [CrossRef]
  13. H. Lamb, Hydrodynamics (Cambridge University, 1932).

2012

2011

K. Wang, D. Wu, Z. Qin, F. Chen, X. B. Luo, and S. Liu, Opt. Express 19, A830 (2011).
[CrossRef]

T. S. Wong, S. H. Kang, K. Y. Sindy, J. S. Elizabeth, and D. H. Benjamin, Nature 477, 443 (2011).
[CrossRef]

2009

N. J. Shirtcliffe, G. McHale, and M. I. Newton, Langmuir 25, 14121 (2009).
[CrossRef]

2008

2005

S. Daniel, M. K. Chaudhury, and P. G. De Gennes, Langmuir 21, 4240 (2005).
[CrossRef]

2004

S. Daniel, S. Sircar, J. Gliem, and M. K. Chaudhury, Langmuir 20, 4085 (2004).
[CrossRef]

X. Noblin, A. Buguin, and F. Brochard-Wyart, Eur. Phys. J. E 14, 395 (2004).
[CrossRef]

2002

H. Hu and R. G. Larson, J. Phys. Chem. B 106, 1334 (2002).
[CrossRef]

1999

M. Perez, Y. Brechet, L. Salvo, M. Papoular, and M. Suery, Europhys. Lett. 47, 189 (1999).
[CrossRef]

1985

P. G. De Gennes, Rev. Mod. Phys. 57, 827 (1985).
[CrossRef]

Benjamin, D. H.

T. S. Wong, S. H. Kang, K. Y. Sindy, J. S. Elizabeth, and D. H. Benjamin, Nature 477, 443 (2011).
[CrossRef]

Brechet, Y.

M. Perez, Y. Brechet, L. Salvo, M. Papoular, and M. Suery, Europhys. Lett. 47, 189 (1999).
[CrossRef]

Brochard-Wyart, F.

X. Noblin, A. Buguin, and F. Brochard-Wyart, Eur. Phys. J. E 14, 395 (2004).
[CrossRef]

Buguin, A.

X. Noblin, A. Buguin, and F. Brochard-Wyart, Eur. Phys. J. E 14, 395 (2004).
[CrossRef]

Chaudhury, M. K.

S. Daniel, M. K. Chaudhury, and P. G. De Gennes, Langmuir 21, 4240 (2005).
[CrossRef]

S. Daniel, S. Sircar, J. Gliem, and M. K. Chaudhury, Langmuir 20, 4085 (2004).
[CrossRef]

Chen, F.

Daniel, S.

S. Daniel, M. K. Chaudhury, and P. G. De Gennes, Langmuir 21, 4240 (2005).
[CrossRef]

S. Daniel, S. Sircar, J. Gliem, and M. K. Chaudhury, Langmuir 20, 4085 (2004).
[CrossRef]

De Gennes, P. G.

S. Daniel, M. K. Chaudhury, and P. G. De Gennes, Langmuir 21, 4240 (2005).
[CrossRef]

P. G. De Gennes, Rev. Mod. Phys. 57, 827 (1985).
[CrossRef]

Ding, Y.

Elizabeth, J. S.

T. S. Wong, S. H. Kang, K. Y. Sindy, J. S. Elizabeth, and D. H. Benjamin, Nature 477, 443 (2011).
[CrossRef]

Gliem, J.

S. Daniel, S. Sircar, J. Gliem, and M. K. Chaudhury, Langmuir 20, 4085 (2004).
[CrossRef]

Gu, P. F.

Hirsa, A. H.

C. A. Lopez and A. H. Hirsa, Nature 2, 610 (2008).
[CrossRef]

Hu, H.

H. Hu and R. G. Larson, J. Phys. Chem. B 106, 1334 (2002).
[CrossRef]

Ji, Z. C.

Kang, S. H.

T. S. Wong, S. H. Kang, K. Y. Sindy, J. S. Elizabeth, and D. H. Benjamin, Nature 477, 443 (2011).
[CrossRef]

Lamb, H.

H. Lamb, Hydrodynamics (Cambridge University, 1932).

Larson, R. G.

H. Hu and R. G. Larson, J. Phys. Chem. B 106, 1334 (2002).
[CrossRef]

Liu, S.

Liu, X.

Lopez, C. A.

C. A. Lopez and A. H. Hirsa, Nature 2, 610 (2008).
[CrossRef]

Luo, X. B.

McHale, G.

N. J. Shirtcliffe, G. McHale, and M. I. Newton, Langmuir 25, 14121 (2009).
[CrossRef]

Newton, M. I.

N. J. Shirtcliffe, G. McHale, and M. I. Newton, Langmuir 25, 14121 (2009).
[CrossRef]

Noblin, X.

X. Noblin, A. Buguin, and F. Brochard-Wyart, Eur. Phys. J. E 14, 395 (2004).
[CrossRef]

Papoular, M.

M. Perez, Y. Brechet, L. Salvo, M. Papoular, and M. Suery, Europhys. Lett. 47, 189 (1999).
[CrossRef]

Perez, M.

M. Perez, Y. Brechet, L. Salvo, M. Papoular, and M. Suery, Europhys. Lett. 47, 189 (1999).
[CrossRef]

Qin, Z.

Salvo, L.

M. Perez, Y. Brechet, L. Salvo, M. Papoular, and M. Suery, Europhys. Lett. 47, 189 (1999).
[CrossRef]

Shirtcliffe, N. J.

N. J. Shirtcliffe, G. McHale, and M. I. Newton, Langmuir 25, 14121 (2009).
[CrossRef]

Sindy, K. Y.

T. S. Wong, S. H. Kang, K. Y. Sindy, J. S. Elizabeth, and D. H. Benjamin, Nature 477, 443 (2011).
[CrossRef]

Sircar, S.

S. Daniel, S. Sircar, J. Gliem, and M. K. Chaudhury, Langmuir 20, 4085 (2004).
[CrossRef]

Su, Z. P.

Suery, M.

M. Perez, Y. Brechet, L. Salvo, M. Papoular, and M. Suery, Europhys. Lett. 47, 189 (1999).
[CrossRef]

Wang, K.

Wong, T. S.

T. S. Wong, S. H. Kang, K. Y. Sindy, J. S. Elizabeth, and D. H. Benjamin, Nature 477, 443 (2011).
[CrossRef]

Wu, D.

Xue, D. L.

Zheng, Z. R.

Eur. Phys. J. E

X. Noblin, A. Buguin, and F. Brochard-Wyart, Eur. Phys. J. E 14, 395 (2004).
[CrossRef]

Europhys. Lett.

M. Perez, Y. Brechet, L. Salvo, M. Papoular, and M. Suery, Europhys. Lett. 47, 189 (1999).
[CrossRef]

J. Phys. Chem. B

H. Hu and R. G. Larson, J. Phys. Chem. B 106, 1334 (2002).
[CrossRef]

Langmuir

S. Daniel, S. Sircar, J. Gliem, and M. K. Chaudhury, Langmuir 20, 4085 (2004).
[CrossRef]

N. J. Shirtcliffe, G. McHale, and M. I. Newton, Langmuir 25, 14121 (2009).
[CrossRef]

S. Daniel, M. K. Chaudhury, and P. G. De Gennes, Langmuir 21, 4240 (2005).
[CrossRef]

Nature

C. A. Lopez and A. H. Hirsa, Nature 2, 610 (2008).
[CrossRef]

T. S. Wong, S. H. Kang, K. Y. Sindy, J. S. Elizabeth, and D. H. Benjamin, Nature 477, 443 (2011).
[CrossRef]

Opt. Express

Rev. Mod. Phys.

P. G. De Gennes, Rev. Mod. Phys. 57, 827 (1985).
[CrossRef]

Other

H. Lamb, Hydrodynamics (Cambridge University, 1932).

Supplementary Material (2)

» Media 1: MP4 (404 KB)     
» Media 2: MP4 (154 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the uniform illumination of a sessile droplet. The bottom of the droplet is pinned by the hydrophilic zone (the blue line). The driven force generated by a loudspeaker is exerted on the droplet, and induces droplet vibration. The incident LED beams are scattered by the vibrated liquid droplet. The substrate is fixed on the platform to avoid side effects on uniform illumination.

Fig. 2.
Fig. 2.

Dependence of the resonant frequency on droplet volume. The red curve is the theoretical results of a certain volume of the droplets. The black curve is the experimental results. The inset in the left-bottom corner refers to the profile at its resonance. The top-right inset shows that the droplet is pinned by the heterogeneous surface during oscillation (Media 1). Each experimental data is an average value of five testing times.

Fig. 3.
Fig. 3.

Simulation results of irradiance distribution on the image plane at 100 mm distance from object plane. The various colorful curves refer to the irradiance distribution at different times in a period. (a)–(c)  represent the irradiance distribution at 0.046, 0.055, and 0.062 s, respectively, and (d) refers to the coupling of irradiance distribution at different times in a period. The final result of uniform illumination can be seen as the envelope of (d). The simulated volume of the droplet is 4 μl.

Fig. 4.
Fig. 4.

Experimental results of irradiance distribution by different droplet volumes at their resonance. The grayscale images from (a) to (d) refer to the original projection of the droplet without vibration. The gray images from ( a ) to ( d ) refer to the original projection of droplet at their resonance (Media 2). The contour images refer to the irradiance distribution corresponding to each situation. All the scale bars are 2 cm.

Metrics