Abstract

In this Letter, multifocus optical-resolution photoacoustic microscopy is demonstrated using wavelength tuning and chromatic aberration for depth scanning. Discrete focal zones at several depth locations were created by refocusing light from a polarization-maintaining single-mode fiber pumped by a nanosecond fiber laser. The fiber and laser parameters were chosen to take advantage of stimulated Raman scattering (SRS) in the fiber to create a multiwavelength output that could then be bandpass filtered. The collimator lens and objective lens are chosen to take advantage of chromatic aberration in which each generated SRS wavelength peak focuses at a slightly different depth. The maximum amplitude of photoacoustic signals is mapped to form C-scan images. Additionally, all wavelength peaks fired simultaneously offers improved depth-of-field structural imaging at the cost of slight degradation of mainlobe-to-sidelobe ratios. Wavelength-tuned depth scanning over more than 440 μm is demonstrated, significantly greater than the 100μm depth of field predicted from our focused Gaussian beams. The improved depth of focus could be valuable for structural imaging of microvascular morphology without the need for mechanical scanning in the depth direction.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hajireza, W. Shi, and R. J. Zemp, Opt. Lett. 36, 4107 (2011).
    [CrossRef]
  2. J. Yao, K. I. Maslov, E. R. Puckett, K. J. Rowland, B. W. Warner, and L. V. Wang, Opt. Lett. 37, 659 (2012).
    [CrossRef]
  3. W. Xing, L. Wang, K. Maslov, and L. V. Wang, Opt. Lett. 38, 52 (2013).
    [CrossRef]
  4. P. Hajireza, W. Shi, and R. J. Zemp, Opt. Express 19, 20097 (2011).
    [CrossRef]
  5. L. Song, K. Maslov, and L. V. Wang, Opt. Lett. 36, 1236 (2011).
    [CrossRef]
  6. G. Li, K. I. Maslov, and L. V. Wang, Biomed. Opt. 18, 030501 (2013).
    [CrossRef]
  7. J. Garzón, T. Gharbi, and J. Meneses, J. Opt. A 10, 104028 (2008).
    [CrossRef]
  8. C. Olsovsky, R. L. Shelton, O. Carrasco-Zevallos, B. E. Applegate, and K. C. Maitland, Biomed. Opt. Express 4, 732 (2013).
    [CrossRef]
  9. B. L. Olmstead and A. Shearin, “Extended depth of field imaging system using chromatic aberration,” U.S. patent7,224,540 (May29, 2007).
  10. D. Koeplinger, L. Mengyang, and T. Buma, in 2011 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2011), pp. 296–299.
  11. Laser Institute of America, American National Standard for Safe Use of Lasers, (American National Standards Institute, Inc., 2000).
  12. P. Hajireza, K. Krause, M. Brett, and R. Zemp, Opt. Express 21, 6391 (2013).
    [CrossRef]

2013

2012

2011

2008

J. Garzón, T. Gharbi, and J. Meneses, J. Opt. A 10, 104028 (2008).
[CrossRef]

Applegate, B. E.

Brett, M.

Buma, T.

D. Koeplinger, L. Mengyang, and T. Buma, in 2011 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2011), pp. 296–299.

Carrasco-Zevallos, O.

Garzón, J.

J. Garzón, T. Gharbi, and J. Meneses, J. Opt. A 10, 104028 (2008).
[CrossRef]

Gharbi, T.

J. Garzón, T. Gharbi, and J. Meneses, J. Opt. A 10, 104028 (2008).
[CrossRef]

Hajireza, P.

Koeplinger, D.

D. Koeplinger, L. Mengyang, and T. Buma, in 2011 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2011), pp. 296–299.

Krause, K.

Li, G.

G. Li, K. I. Maslov, and L. V. Wang, Biomed. Opt. 18, 030501 (2013).
[CrossRef]

Maitland, K. C.

Maslov, K.

Maslov, K. I.

Meneses, J.

J. Garzón, T. Gharbi, and J. Meneses, J. Opt. A 10, 104028 (2008).
[CrossRef]

Mengyang, L.

D. Koeplinger, L. Mengyang, and T. Buma, in 2011 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2011), pp. 296–299.

Olmstead, B. L.

B. L. Olmstead and A. Shearin, “Extended depth of field imaging system using chromatic aberration,” U.S. patent7,224,540 (May29, 2007).

Olsovsky, C.

Puckett, E. R.

Rowland, K. J.

Shearin, A.

B. L. Olmstead and A. Shearin, “Extended depth of field imaging system using chromatic aberration,” U.S. patent7,224,540 (May29, 2007).

Shelton, R. L.

Shi, W.

Song, L.

Wang, L.

Wang, L. V.

Warner, B. W.

Xing, W.

Yao, J.

Zemp, R.

Zemp, R. J.

Biomed. Opt.

G. Li, K. I. Maslov, and L. V. Wang, Biomed. Opt. 18, 030501 (2013).
[CrossRef]

Biomed. Opt. Express

J. Opt. A

J. Garzón, T. Gharbi, and J. Meneses, J. Opt. A 10, 104028 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Other

B. L. Olmstead and A. Shearin, “Extended depth of field imaging system using chromatic aberration,” U.S. patent7,224,540 (May29, 2007).

D. Koeplinger, L. Mengyang, and T. Buma, in 2011 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2011), pp. 296–299.

Laser Institute of America, American National Standard for Safe Use of Lasers, (American National Standards Institute, Inc., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup of multifocus OR-PAM. FLD, fiber laser diode; OL, objective lens; PM-SMF, polarization-maintaining single-mode fiber; CL, collimator lens; UST, ultrasound transducer.

Fig. 2.
Fig. 2.

OR-PAM images of carbon fiber network at four different wavelengths at fixed depth (a)–(d) and variable depth (e)–(h).

Fig. 3.
Fig. 3.

Point-spread functions of 532 nm and combination of all wavelengths.

Fig. 4.
Fig. 4.

In vivo images of a Swiss Webster mouse at (a) combination of all wavelengths (532, 543, and 560 nm), (b) 543 nm, (c) 560 nm, (d) combination of all wavelengths (532, 543, and 560 nm) with the same energy level as (b) and (c).

Tables (1)

Tables Icon

Table 1. Results of Fig. 2

Metrics