Abstract

A microstructured optical fiber with a new type of waveguiding mechanism is proposed. The fiber consists of a circular rod array of high index material (n=3.48) embedded in a low index background (n=1.44). The rod array exhibits guided-mode resonance (GMR) for cylindrical waves arriving from inside the array, and thus functions as a highly reflective circular wall. Through finite-difference time-domain (FDTD) simulations, we confirmed light confinement and guidance near the GMR wavelength. Basic optical characteristics such as dispersion relations, loss spectra, and mode field profiles were calculated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, Opt. Lett. 36, 2432 (2011).
    [CrossRef]
  2. N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, Opt. Express 17, 18076 (2009).
    [CrossRef]
  3. J. C. Knight, Nature 424, 847 (2003).
    [CrossRef]
  4. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000).
    [CrossRef]
  5. A. Vincent and M. Nevière, Appl. Phys. 20, 345 (1979).
    [CrossRef]
  6. Y. Ohtera, S. Iijima, and H. Yamada, Opt. Lett. 36, 1689 (2011).
    [CrossRef]
  7. Y. Ohtera, S. Iijima, and H. Yamada, Micromachines 3, 101 (2012).
    [CrossRef]
  8. S. Tonchev, Y. Jourlin, C. Veillas, S. Reynaud, N. Lyndin, O. Parriaux, J. Laukkanen, and M. Kuittinen, Opt. Express 20, 7946 (2012).
    [CrossRef]
  9. J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, Optic 121, 1389 (2010).
  10. S. Xiao and R. Vahldieck, IEEE Microwave Guided Wave Lett. 3, 127 (1993).
    [CrossRef]

2012 (2)

2011 (2)

2010 (1)

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, Optic 121, 1389 (2010).

2009 (1)

2003 (1)

J. C. Knight, Nature 424, 847 (2003).
[CrossRef]

2000 (1)

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000).
[CrossRef]

1993 (1)

S. Xiao and R. Vahldieck, IEEE Microwave Guided Wave Lett. 3, 127 (1993).
[CrossRef]

1979 (1)

A. Vincent and M. Nevière, Appl. Phys. 20, 345 (1979).
[CrossRef]

Badding, J. V.

Fan, S.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000).
[CrossRef]

Fink, Y.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000).
[CrossRef]

Granzow, N.

Hane, K.

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, Optic 121, 1389 (2010).

Healy, N.

Hu, F.-R.

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, Optic 121, 1389 (2010).

Ibanescu, M.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000).
[CrossRef]

Iijima, S.

Y. Ohtera, S. Iijima, and H. Yamada, Micromachines 3, 101 (2012).
[CrossRef]

Y. Ohtera, S. Iijima, and H. Yamada, Opt. Lett. 36, 1689 (2011).
[CrossRef]

Joannopoulos, J. D.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000).
[CrossRef]

Jourlin, Y.

Kanamori, Y.

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, Optic 121, 1389 (2010).

Knight, J. C.

J. C. Knight, Nature 424, 847 (2003).
[CrossRef]

Kuittinen, M.

Laukkanen, J.

Lyndin, N.

Nevière, M.

A. Vincent and M. Nevière, Appl. Phys. 20, 345 (1979).
[CrossRef]

Ohtera, Y.

Y. Ohtera, S. Iijima, and H. Yamada, Micromachines 3, 101 (2012).
[CrossRef]

Y. Ohtera, S. Iijima, and H. Yamada, Opt. Lett. 36, 1689 (2011).
[CrossRef]

Parriaux, O.

Peacock, A. C.

Petrovich, M. N.

Reynaud, S.

Russell, P. St. J.

Sazio, P. J. A.

Schmidt, M. A.

Sparks, J. R.

Thomas, E. L.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000).
[CrossRef]

Tonchev, S.

Tverjanovich, A. S.

Uebel, P.

Vahldieck, R.

S. Xiao and R. Vahldieck, IEEE Microwave Guided Wave Lett. 3, 127 (1993).
[CrossRef]

Veillas, C.

Vincent, A.

A. Vincent and M. Nevière, Appl. Phys. 20, 345 (1979).
[CrossRef]

Wondraczek, L.

Xiao, S.

S. Xiao and R. Vahldieck, IEEE Microwave Guided Wave Lett. 3, 127 (1993).
[CrossRef]

Yamada, H.

Y. Ohtera, S. Iijima, and H. Yamada, Micromachines 3, 101 (2012).
[CrossRef]

Y. Ohtera, S. Iijima, and H. Yamada, Opt. Lett. 36, 1689 (2011).
[CrossRef]

Ye, J.-S.

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, Optic 121, 1389 (2010).

Appl. Phys. (1)

A. Vincent and M. Nevière, Appl. Phys. 20, 345 (1979).
[CrossRef]

IEEE Microwave Guided Wave Lett. (1)

S. Xiao and R. Vahldieck, IEEE Microwave Guided Wave Lett. 3, 127 (1993).
[CrossRef]

Micromachines (1)

Y. Ohtera, S. Iijima, and H. Yamada, Micromachines 3, 101 (2012).
[CrossRef]

Nature (1)

J. C. Knight, Nature 424, 847 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Optic (1)

J.-S. Ye, Y. Kanamori, F.-R. Hu, and K. Hane, Optic 121, 1389 (2010).

Science (1)

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic view of a cross section of the proposed microstructured fiber. A, Computational domains for the simulation of GMR performance of the rods (see Fig. 3); B, dispersion relations of the fiber (see Fig. 7); PBC, periodic boundary conditions; ABC, absorbing boundary conditions.

Fig. 2.
Fig. 2.

Reflection spectra of the rod array. Dashed, solid, and dotted lines correspond to flat, curved (ρ=36Λ/2π), and ρ=20Λ/2π arrays, respectively.

Fig. 3.
Fig. 3.

Calculated E-field patterns at GMR wavelengths. (a) flat, (b), (c) finite curvature structures with ρ=36Λ/2π and ρ=20Λ/2π, respectively. Incident wave was launched from the top of the figure. k denotes the wavevector of the launched wave. Ratio of the rod diameter to the array pitch is d/Λ=0.5.

Fig. 4.
Fig. 4.

GMR wavelength and peak reflectivity for various curvatures. Dashed line denotes the curvature for a sample fiber structure.

Fig. 5.
Fig. 5.

Calculated dispersion relations of confined modes. R1 and R4, Resonantly guided modes (RGMs); I1, index guided mode (IGM). Only azimuthally-uniform modes are displayed. F1 is the in-plane GMR frequency for the rod array with the same curvature radius (ρ=36Λ/2π). F2 is the frequency above which the first-order diffraction wave occurs (F2=1/nclad). Hatched triangle indicates index-guided region.

Fig. 6.
Fig. 6.

Leakage loss of the resonantly guided modes.

Fig. 7.
Fig. 7.

Mode field profiles of the resonantly guided mode (R4) at βz=3.49rad/Λ (minimum loss point). (a) Radial component of the electric field, (b) angular component of the magnetic field.

Metrics