Abstract

Heavy computational load of computer-generated hologram (CGH) and imprecise intensity modulation of 3D images are crucial problems in dynamic holographic display. The nonuniform sampling method is proposed to speed up CGH generation and precisely modulate the reconstructed intensities of phase-only CGH. The proposed method can eliminate the redundant information properly, where 70% reduction in the storage amount can be reached when it is combined with the novel lookup table method. Multigrayscale modulation of reconstructed 3D images can be achieved successfully. Numerical simulations and optical experiments are performed, and both are in good agreement. It is believed that the proposed method can be used in 3D dynamic holographic display.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Stein, Z. Wang, and J. J. S. Leigh, Comput. Phys. 6, 389 (1992).
    [CrossRef]
  2. M. Lucente, J. Electron. Imaging 2, 28 (1993).
    [CrossRef]
  3. S. C. Kim and E. S. Kim, Appl. Opt. 47, D55 (2008).
    [CrossRef]
  4. Y. C. Pan, X. W. Xu, S. Solanki, and X. A. Liang, Opt. Express 17, 18543 (2009).
    [CrossRef]
  5. Z. Yang, Q. Fan, Y. Zhang, J. Liu, and J. Zhou, J. Opt. 14, 095702 (2012).
    [CrossRef]
  6. J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, and B. Zhang, Appl. Opt. 52, 1404 (2013).
    [CrossRef]
  7. R. S. Pappu, Opt. Eng. 35, 1538 (1996).
    [CrossRef]
  8. V. Bagnoud and J. D. Zuegel, Opt. Lett. 29, 295 (2004).
    [CrossRef]
  9. M. L. Hsieh, M. L. Chen, and C. J. Cheng, Opt. Eng. 46, 070501 (2007).
    [CrossRef]
  10. H. Song, G. Sung, S. Choi, K. Won, H. S. Lee, and H. Kim, Opt. Express 20, 29844 (2012).
    [CrossRef]
  11. A. Siemion, M. Sypek, J. Suszek, and M. Makowski, Opt. Lett. 37, 5064 (2012).
    [CrossRef]
  12. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, J. Opt. Soc. Am. A 24, 3500 (2007).
    [CrossRef]
  13. Y. Barniv and O. Kella, IEEE Trans. Autom. Control 23, 618 (1978).
    [CrossRef]
  14. H. Zhang, J. Xie, J. Liu, and Y. Wang, Appl. Opt. 48, 5834 (2009).
    [CrossRef]

2013 (1)

2012 (3)

2009 (2)

2008 (1)

2007 (2)

2004 (1)

1996 (1)

R. S. Pappu, Opt. Eng. 35, 1538 (1996).
[CrossRef]

1993 (1)

M. Lucente, J. Electron. Imaging 2, 28 (1993).
[CrossRef]

1992 (1)

A. D. Stein, Z. Wang, and J. J. S. Leigh, Comput. Phys. 6, 389 (1992).
[CrossRef]

1978 (1)

Y. Barniv and O. Kella, IEEE Trans. Autom. Control 23, 618 (1978).
[CrossRef]

Arrizón, V.

Bagnoud, V.

Barniv, Y.

Y. Barniv and O. Kella, IEEE Trans. Autom. Control 23, 618 (1978).
[CrossRef]

Carrada, R.

Chen, M. L.

M. L. Hsieh, M. L. Chen, and C. J. Cheng, Opt. Eng. 46, 070501 (2007).
[CrossRef]

Cheng, C. J.

M. L. Hsieh, M. L. Chen, and C. J. Cheng, Opt. Eng. 46, 070501 (2007).
[CrossRef]

Choi, S.

Fan, Q.

Z. Yang, Q. Fan, Y. Zhang, J. Liu, and J. Zhou, J. Opt. 14, 095702 (2012).
[CrossRef]

González, L. A.

Hsieh, M. L.

M. L. Hsieh, M. L. Chen, and C. J. Cheng, Opt. Eng. 46, 070501 (2007).
[CrossRef]

Jia, J.

Kella, O.

Y. Barniv and O. Kella, IEEE Trans. Autom. Control 23, 618 (1978).
[CrossRef]

Kim, E. S.

Kim, H.

Kim, S. C.

Lee, H. S.

Leigh, J. J. S.

A. D. Stein, Z. Wang, and J. J. S. Leigh, Comput. Phys. 6, 389 (1992).
[CrossRef]

Li, X.

Liang, X. A.

Liu, J.

Lucente, M.

M. Lucente, J. Electron. Imaging 2, 28 (1993).
[CrossRef]

Makowski, M.

Pan, Y.

Pan, Y. C.

Pappu, R. S.

R. S. Pappu, Opt. Eng. 35, 1538 (1996).
[CrossRef]

Ruiz, U.

Siemion, A.

Solanki, S.

Song, H.

Stein, A. D.

A. D. Stein, Z. Wang, and J. J. S. Leigh, Comput. Phys. 6, 389 (1992).
[CrossRef]

Sun, Z.

Sung, G.

Suszek, J.

Sypek, M.

Wang, Y.

Wang, Z.

A. D. Stein, Z. Wang, and J. J. S. Leigh, Comput. Phys. 6, 389 (1992).
[CrossRef]

Won, K.

Xie, J.

Xu, X. W.

Yang, Z.

Z. Yang, Q. Fan, Y. Zhang, J. Liu, and J. Zhou, J. Opt. 14, 095702 (2012).
[CrossRef]

Zhang, B.

Zhang, H.

Zhang, Y.

Z. Yang, Q. Fan, Y. Zhang, J. Liu, and J. Zhou, J. Opt. 14, 095702 (2012).
[CrossRef]

Zhou, J.

Z. Yang, Q. Fan, Y. Zhang, J. Liu, and J. Zhou, J. Opt. 14, 095702 (2012).
[CrossRef]

Zuegel, J. D.

Appl. Opt. (3)

Comput. Phys. (1)

A. D. Stein, Z. Wang, and J. J. S. Leigh, Comput. Phys. 6, 389 (1992).
[CrossRef]

IEEE Trans. Autom. Control (1)

Y. Barniv and O. Kella, IEEE Trans. Autom. Control 23, 618 (1978).
[CrossRef]

J. Electron. Imaging (1)

M. Lucente, J. Electron. Imaging 2, 28 (1993).
[CrossRef]

J. Opt. (1)

Z. Yang, Q. Fan, Y. Zhang, J. Liu, and J. Zhou, J. Opt. 14, 095702 (2012).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (2)

R. S. Pappu, Opt. Eng. 35, 1538 (1996).
[CrossRef]

M. L. Hsieh, M. L. Chen, and C. J. Cheng, Opt. Eng. 46, 070501 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Computational model for generating a basic hologram and (b) the flow chart of the CGH generation using the nonuniform sampling method combined with the N-LUT.

Fig. 2.
Fig. 2.

Simulated and experimental results for reducing memory size. (a) and (b) are the simulated results, (c) and (d) are the experimental results of focusing at 380 and 450 mm, and (e) is the reduction ratio of memory size and the SNR of the reconstructed point source as a function of sampling number.

Fig. 3.
Fig. 3.

(a) Numerical and (b) experimental results of different grayscale reconstructed by a phase-only hologram. (c) Sampling points as a function of intensity (grayscale) reconstructed by a phase-only hologram.

Fig. 4.
Fig. 4.

Intensity modulation for 2D and 3D images. (a) and (b) are the prototypes of the 2D and 3D images, (c) and (d) are the simulated and experimental results of (a), (e) and (f) are the simulated and experimental results of (b) focused at 380 mm, and (e) and (h) focused at 450 mm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ϕ(xd,yd;d)=(2π/λ)rd,
rd=(xdx0)2+(ydy0)2+d2,
fξ=12π|ϕξd|=|ξdξ0|λ(xdx0)2+(ydy0)2+d2,
δξ=1/fξ.
R=(1MnonMnor)×100%,
Rsnr=A2/σn2,σn2=1MNi=1Mj=1Nn(i,j)2,

Metrics