Abstract

We demonstrate dynamic control of the optical path length for probe light in a spherical dielectric resonator simply by multiplexing intense control light of another color and adjusting its wavelength. The fractional change in the path length, monitored by the resonance wavelengths of whispering gallery modes of the probe light, was nearly equal to the fractional change in the wavelength of the control light. The control was effective in both increasing and decreasing the wavelength, but the weaker the control light or the faster the wavelength change, the narrower the range of control.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, IPN Progr. Rep. 42-162, 1 (2005).
  2. V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
    [CrossRef]
  3. I. Teraoka and S. Arnold, J. Opt. Soc. Am. B 23, 1381 (2006).
    [CrossRef]
  4. M. Agarwal and I. Teraoka, Appl. Phys. Lett. 101, 251105 (2012).
    [CrossRef]
  5. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
    [CrossRef]
  6. L. Collot, V. Lefèrvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
    [CrossRef]
  7. T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742 (2004).
    [CrossRef]
  8. H. Rokhsari, S. M. Spillane, and K. J. Vahala, Appl. Phys. Lett. 85, 3029 (2004).
    [CrossRef]
  9. C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O. Egorov, F. Lederer, and L. Deych, Opt. Express 16, 6285 (2008).
    [CrossRef]
  10. H. N. Luo, H. S. Kim, M. Agarwal, and I. Teraoka, Appl. Opt. 52, 2834 (2013).
    [CrossRef]
  11. Y.-S. Park and H. Wang, Opt. Express 15, 16471 (2007).
    [CrossRef]

2013 (1)

2012 (1)

M. Agarwal and I. Teraoka, Appl. Phys. Lett. 101, 251105 (2012).
[CrossRef]

2008 (1)

2007 (1)

2006 (2)

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
[CrossRef]

I. Teraoka and S. Arnold, J. Opt. Soc. Am. B 23, 1381 (2006).
[CrossRef]

2005 (1)

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, IPN Progr. Rep. 42-162, 1 (2005).

2004 (2)

T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742 (2004).
[CrossRef]

H. Rokhsari, S. M. Spillane, and K. J. Vahala, Appl. Phys. Lett. 85, 3029 (2004).
[CrossRef]

1993 (1)

L. Collot, V. Lefèrvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
[CrossRef]

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Agarwal, M.

H. N. Luo, H. S. Kim, M. Agarwal, and I. Teraoka, Appl. Opt. 52, 2834 (2013).
[CrossRef]

M. Agarwal and I. Teraoka, Appl. Phys. Lett. 101, 251105 (2012).
[CrossRef]

Arnold, S.

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Brune, M.

L. Collot, V. Lefèrvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
[CrossRef]

Carmon, T.

Chipouline, A.

Collot, L.

L. Collot, V. Lefèrvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
[CrossRef]

Deych, L.

Egorov, O.

Gorodetsky, M. L.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Haroche, S.

L. Collot, V. Lefèrvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
[CrossRef]

Ilchenko, V. S.

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, IPN Progr. Rep. 42-162, 1 (2005).

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Kim, H. S.

Lederer, F.

Lefèrvre-Seguin, V.

L. Collot, V. Lefèrvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
[CrossRef]

Luo, H. N.

Maleki, L.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, IPN Progr. Rep. 42-162, 1 (2005).

Matsko, A. B.

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, IPN Progr. Rep. 42-162, 1 (2005).

Park, Y.-S.

Pertsch, T.

Raimond, J. M.

L. Collot, V. Lefèrvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
[CrossRef]

Rokhsari, H.

H. Rokhsari, S. M. Spillane, and K. J. Vahala, Appl. Phys. Lett. 85, 3029 (2004).
[CrossRef]

Savchenkov, A. A.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, IPN Progr. Rep. 42-162, 1 (2005).

Schmidt, C.

Spillane, S. M.

H. Rokhsari, S. M. Spillane, and K. J. Vahala, Appl. Phys. Lett. 85, 3029 (2004).
[CrossRef]

Strekalov, D.

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, IPN Progr. Rep. 42-162, 1 (2005).

Teraoka, I.

Tünnermann, A.

Vahala, K. J.

T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742 (2004).
[CrossRef]

H. Rokhsari, S. M. Spillane, and K. J. Vahala, Appl. Phys. Lett. 85, 3029 (2004).
[CrossRef]

Wang, H.

Yang, L.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Agarwal and I. Teraoka, Appl. Phys. Lett. 101, 251105 (2012).
[CrossRef]

H. Rokhsari, S. M. Spillane, and K. J. Vahala, Appl. Phys. Lett. 85, 3029 (2004).
[CrossRef]

Europhys. Lett. (1)

L. Collot, V. Lefèrvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

V. S. Ilchenko and A. B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006).
[CrossRef]

IPN Progr. Rep. (1)

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, IPN Progr. Rep. 42-162, 1 (2005).

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Pair of single-ended tapers that are parallel but displaced by 2μm, glued to a microscope slide, feed light into the resonator and pick up the light from WGM. Intense light from a 1.30 μm distributed feedback (DFB) laser (FITEL 13DDR8-A31) and 20 dB attenuated light from a 1.61 μm DFB laser (FITEL 15DCWA-A81) are coupled into the feed taper. A spherical silica microresonator of 130 μm radius, fabricated by melting the tip of a single-mode fiber, sits on top of the gap between the two tapers. The light from the pick-up taper is split by a WDM demultiplexer (JDS Uniphase WD1315U), and each component is led to a PD. (b) Wavelength scans of the 1.30 μm and 1.61 μm lasers. The wavelength of the 1.61 μm light was scanned from 1610.6607 to 1610.6888 nm in a triangular wave of a 40.96 ms period. The period T and the scan range for the 1.30 μm light were varied.

Fig. 2.
Fig. 2.

PD signal plotted as a function of laser current for the (a) 1.61 μm light and (b) 1.30 μm light in a period of respective triangular wave scan. The wavelength is indicated at both ends of the scan range. The left half is for the up scan of wavelength; the right half for the down scan. For (b), the signals are shown for: (1) no attenuation and T=81.8s (11.7 mW in the feed fiber at 80 mA), (2) no attenuation and T=0.0819s, and (3) 20 dB attenuation and T=81.8s (signal is amplified by 31.6).

Fig. 3.
Fig. 3.

(1) Time traces of the 1.30 μm laser current, (2) 1.30 μm PD signal, and (3) the shift of the 1.61 μm resonance spectrum for three periods of the 1.30 μm wavelength scan. The baseline level of the 1.30 μm PD signal is 8mV. The wavelength scan range is indicated in each panel. The ramp rate of the 1.30 μm wavelength is 0.322, 0.494, and 0.494ppm/s for (a), (b), and (c), respectively. The power of the 1.30 μm light is attenuated by 5 dB in (b). The shift trace in the dashed circle is zoomed for clarity in (c).

Fig. 4.
Fig. 4.

Maximum shift range of the 1.61 μm resonance spectrum in a period of the 1.3 μm wavelength scan (open symbols) and the broadest uninterrupted shift range (closed symbols), plotted as a function of the wavelength ramp rate of the 1.3 μm light, when unattenuated 1.30 μm light (circles) and 5 dB attenuated light (squares) were supplied. The lines are eye guides. The inset explains how the two ranges are defined in the 1.61 μm resonance shift plot.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2πna=lλ,

Metrics