Abstract

We propose and experimentally demonstrate a fiber-optic sensor implemented based on a dual-frequency optoelectronic oscillator (OEO) for transverse load sensing. In the OEO loop, a phase-shifted fiber Bragg grating (PS-FBG) is employed to which a transverse load is applied to introduce a birefringence to create two orthogonally polarized notches, which leads to the generation of two oscillating frequencies. The beat frequency between the two oscillating frequencies is a function of the load force applied to the PS-FBG. The proposed sensor is experimentally demonstrated. The sensitivity and the minimal detectable load are measured to be as high as 9.73GHz/(N/mm) and 2.06×104N/mm, respectively. The high-frequency purity and stability of the generated microwave signal by the OEO permit extremely reliable and high-accuracy measurement. The frequency interrogation allows the system to operate at an ultra-high speed. In addition, the sensing signal is insensitive to the variations of both the environmental temperature and the optical carrier wavelength.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Jones, Nat. Photonics 2, 153 (2008).
    [CrossRef]
  2. H. Guo, G. Xiao, N. Mrad, and J. P. Yao, Sensors 11, 3687 (2011).
    [CrossRef]
  3. E. Pinet, Nat. Photonics 2, 150 (2008).
    [CrossRef]
  4. H. Nakstad and J. T. Kringlebotn, Nat. Photonics 2, 147 (2008).
    [CrossRef]
  5. M. LeBlanc, S. T. Vohra, T. E. Tsai, and E. J. Friebele, Opt. Lett. 24, 1091 (1999).
    [CrossRef]
  6. H. Fu, X. Shu, C. B. Mou, L. Zhang, S. He, and I. Bennion, IEEE Photon. Technol. Lett. 21, 987 (2009).
  7. J. T. Kringlebotn, W. H. Loh, and R. I. Laming, Opt. Lett. 21, 1869 (1996).
    [CrossRef]
  8. Y. Zhang, B. O. Guan, and H. Y. Tam, Opt. Commun. 281, 4619 (2008).
    [CrossRef]
  9. L. Gao, L. Chen, L. Huang, S. Liu, Z. Yin, and X. Chen, IEEE Sensor J. 12, 1513 (2012).
  10. B. O. Guan, L. Jin, Y. Zhang, and H. Y. Tam, J. Lightwave Technol. 30, 1097 (2012).
    [CrossRef]
  11. J. Zhang, Q. Sun, R. Liang, J. Wo, D. Liu, and P. Shum, Opt. Lett. 37, 2925 (2012).
    [CrossRef]
  12. M. Li, W. Li, J. P. Yao, and J. Azana, in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper BTu2E.3.
  13. W. Li, M. Li, and J. P. Yao, IEEE Trans. Microwave Theor. Tech. 60, 1287 (2012).
  14. W. Li and J. P. Yao, IEEE Trans. Microwave Theor. Tech. 60, 1735 (2012).

2012 (5)

W. Li, M. Li, and J. P. Yao, IEEE Trans. Microwave Theor. Tech. 60, 1287 (2012).

W. Li and J. P. Yao, IEEE Trans. Microwave Theor. Tech. 60, 1735 (2012).

L. Gao, L. Chen, L. Huang, S. Liu, Z. Yin, and X. Chen, IEEE Sensor J. 12, 1513 (2012).

B. O. Guan, L. Jin, Y. Zhang, and H. Y. Tam, J. Lightwave Technol. 30, 1097 (2012).
[CrossRef]

J. Zhang, Q. Sun, R. Liang, J. Wo, D. Liu, and P. Shum, Opt. Lett. 37, 2925 (2012).
[CrossRef]

2011 (1)

H. Guo, G. Xiao, N. Mrad, and J. P. Yao, Sensors 11, 3687 (2011).
[CrossRef]

2009 (1)

H. Fu, X. Shu, C. B. Mou, L. Zhang, S. He, and I. Bennion, IEEE Photon. Technol. Lett. 21, 987 (2009).

2008 (4)

M. Jones, Nat. Photonics 2, 153 (2008).
[CrossRef]

E. Pinet, Nat. Photonics 2, 150 (2008).
[CrossRef]

H. Nakstad and J. T. Kringlebotn, Nat. Photonics 2, 147 (2008).
[CrossRef]

Y. Zhang, B. O. Guan, and H. Y. Tam, Opt. Commun. 281, 4619 (2008).
[CrossRef]

1999 (1)

1996 (1)

Azana, J.

M. Li, W. Li, J. P. Yao, and J. Azana, in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper BTu2E.3.

Bennion, I.

H. Fu, X. Shu, C. B. Mou, L. Zhang, S. He, and I. Bennion, IEEE Photon. Technol. Lett. 21, 987 (2009).

Chen, L.

L. Gao, L. Chen, L. Huang, S. Liu, Z. Yin, and X. Chen, IEEE Sensor J. 12, 1513 (2012).

Chen, X.

L. Gao, L. Chen, L. Huang, S. Liu, Z. Yin, and X. Chen, IEEE Sensor J. 12, 1513 (2012).

Friebele, E. J.

Fu, H.

H. Fu, X. Shu, C. B. Mou, L. Zhang, S. He, and I. Bennion, IEEE Photon. Technol. Lett. 21, 987 (2009).

Gao, L.

L. Gao, L. Chen, L. Huang, S. Liu, Z. Yin, and X. Chen, IEEE Sensor J. 12, 1513 (2012).

Guan, B. O.

B. O. Guan, L. Jin, Y. Zhang, and H. Y. Tam, J. Lightwave Technol. 30, 1097 (2012).
[CrossRef]

Y. Zhang, B. O. Guan, and H. Y. Tam, Opt. Commun. 281, 4619 (2008).
[CrossRef]

Guo, H.

H. Guo, G. Xiao, N. Mrad, and J. P. Yao, Sensors 11, 3687 (2011).
[CrossRef]

He, S.

H. Fu, X. Shu, C. B. Mou, L. Zhang, S. He, and I. Bennion, IEEE Photon. Technol. Lett. 21, 987 (2009).

Huang, L.

L. Gao, L. Chen, L. Huang, S. Liu, Z. Yin, and X. Chen, IEEE Sensor J. 12, 1513 (2012).

Jin, L.

Jones, M.

M. Jones, Nat. Photonics 2, 153 (2008).
[CrossRef]

Kringlebotn, J. T.

H. Nakstad and J. T. Kringlebotn, Nat. Photonics 2, 147 (2008).
[CrossRef]

J. T. Kringlebotn, W. H. Loh, and R. I. Laming, Opt. Lett. 21, 1869 (1996).
[CrossRef]

Laming, R. I.

LeBlanc, M.

Li, M.

W. Li, M. Li, and J. P. Yao, IEEE Trans. Microwave Theor. Tech. 60, 1287 (2012).

M. Li, W. Li, J. P. Yao, and J. Azana, in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper BTu2E.3.

Li, W.

W. Li, M. Li, and J. P. Yao, IEEE Trans. Microwave Theor. Tech. 60, 1287 (2012).

W. Li and J. P. Yao, IEEE Trans. Microwave Theor. Tech. 60, 1735 (2012).

M. Li, W. Li, J. P. Yao, and J. Azana, in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper BTu2E.3.

Liang, R.

Liu, D.

Liu, S.

L. Gao, L. Chen, L. Huang, S. Liu, Z. Yin, and X. Chen, IEEE Sensor J. 12, 1513 (2012).

Loh, W. H.

Mou, C. B.

H. Fu, X. Shu, C. B. Mou, L. Zhang, S. He, and I. Bennion, IEEE Photon. Technol. Lett. 21, 987 (2009).

Mrad, N.

H. Guo, G. Xiao, N. Mrad, and J. P. Yao, Sensors 11, 3687 (2011).
[CrossRef]

Nakstad, H.

H. Nakstad and J. T. Kringlebotn, Nat. Photonics 2, 147 (2008).
[CrossRef]

Pinet, E.

E. Pinet, Nat. Photonics 2, 150 (2008).
[CrossRef]

Shu, X.

H. Fu, X. Shu, C. B. Mou, L. Zhang, S. He, and I. Bennion, IEEE Photon. Technol. Lett. 21, 987 (2009).

Shum, P.

Sun, Q.

Tam, H. Y.

B. O. Guan, L. Jin, Y. Zhang, and H. Y. Tam, J. Lightwave Technol. 30, 1097 (2012).
[CrossRef]

Y. Zhang, B. O. Guan, and H. Y. Tam, Opt. Commun. 281, 4619 (2008).
[CrossRef]

Tsai, T. E.

Vohra, S. T.

Wo, J.

Xiao, G.

H. Guo, G. Xiao, N. Mrad, and J. P. Yao, Sensors 11, 3687 (2011).
[CrossRef]

Yao, J. P.

W. Li and J. P. Yao, IEEE Trans. Microwave Theor. Tech. 60, 1735 (2012).

W. Li, M. Li, and J. P. Yao, IEEE Trans. Microwave Theor. Tech. 60, 1287 (2012).

H. Guo, G. Xiao, N. Mrad, and J. P. Yao, Sensors 11, 3687 (2011).
[CrossRef]

M. Li, W. Li, J. P. Yao, and J. Azana, in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper BTu2E.3.

Yin, Z.

L. Gao, L. Chen, L. Huang, S. Liu, Z. Yin, and X. Chen, IEEE Sensor J. 12, 1513 (2012).

Zhang, J.

Zhang, L.

H. Fu, X. Shu, C. B. Mou, L. Zhang, S. He, and I. Bennion, IEEE Photon. Technol. Lett. 21, 987 (2009).

Zhang, Y.

B. O. Guan, L. Jin, Y. Zhang, and H. Y. Tam, J. Lightwave Technol. 30, 1097 (2012).
[CrossRef]

Y. Zhang, B. O. Guan, and H. Y. Tam, Opt. Commun. 281, 4619 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Fu, X. Shu, C. B. Mou, L. Zhang, S. He, and I. Bennion, IEEE Photon. Technol. Lett. 21, 987 (2009).

IEEE Sensor J. (1)

L. Gao, L. Chen, L. Huang, S. Liu, Z. Yin, and X. Chen, IEEE Sensor J. 12, 1513 (2012).

IEEE Trans. Microwave Theor. Tech. (2)

W. Li, M. Li, and J. P. Yao, IEEE Trans. Microwave Theor. Tech. 60, 1287 (2012).

W. Li and J. P. Yao, IEEE Trans. Microwave Theor. Tech. 60, 1735 (2012).

J. Lightwave Technol. (1)

Nat. Photonics (3)

M. Jones, Nat. Photonics 2, 153 (2008).
[CrossRef]

E. Pinet, Nat. Photonics 2, 150 (2008).
[CrossRef]

H. Nakstad and J. T. Kringlebotn, Nat. Photonics 2, 147 (2008).
[CrossRef]

Opt. Commun. (1)

Y. Zhang, B. O. Guan, and H. Y. Tam, Opt. Commun. 281, 4619 (2008).
[CrossRef]

Opt. Lett. (3)

Sensors (1)

H. Guo, G. Xiao, N. Mrad, and J. P. Yao, Sensors 11, 3687 (2011).
[CrossRef]

Other (1)

M. Li, W. Li, J. P. Yao, and J. Azana, in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper BTu2E.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Configuration of the proposed transverse load sensor. PolM, polarization modulator; PC, polarization controller; PD, photodetector; EA, electrical amplifier; ESA, electrical spectrum analyzer; PS-FBG, phase-shifted fiber Bragg grating; OC, optical circulator.

Fig. 2.
Fig. 2.

(a) Single passband photonic microwave filter when the incident light is alighted with an angle of 0° or 90° relative to one principal axis of the PolM. (b) Dual passband photonic microwave filter when the incident light is alighted with an angle of 45° relative to one principal axis of the PolM.

Fig. 3.
Fig. 3.

Electrical spectrum of the signal generated by the dual-frequency OEO, with two microwave signals at 8.22 and 14.24 GHz and a beat signal at 6.02 GHz. Inset: the zoom-in view of the beat signal.

Fig. 4.
Fig. 4.

Measured beating frequency as a function of applied transverse load and the electrical spectrum with different load. Inset: the electrical spectrum with different load.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

EPM(t)=E0exp{j[ωct+π(Ve/Vπ)cos(ωRFt)]}E0{J0(β)ejωct+J1(β)ej(ωcωRF)t+π/2J1(β)ej(ωcωRF)tπ/2},
Δν=νxνy=cB/n0λ0,
B=2n03(p11p12)(1+νp)cos(2θ)F/πrE,

Metrics