Abstract

We report on an integrated approach to obtain multiwavelength emission from semiconductor ring lasers with filtered optical feedback. The filtered feedback is realized on-chip employing two arrayed-waveguide gratings to split/recombine light into different wavelength channels. Through experimental observations and numerical simulations, we find that the effective gain of the different modes is the key parameter which has to be balanced in order to achieve multiwavelength emission. This can be achieved by tuning the injection current in each amplifier.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, IEEE J. Sel. Top. Quantum Electron. 6, 197 (2000).
    [CrossRef]
  2. T. Healy, F. C. Garcia Gunning, A. D. Ellis, and J. D. Bull, Opt. Express 15, 2981 (2007).
    [CrossRef]
  3. K. Venkataraayan, S. Askraba, K. E. Alameh, and C. L. Smith, Opt. Express 18, 3774 (2010).
    [CrossRef]
  4. A. Saha, A. Ray, S. Mukhopadhyay, N. Sinha, P. K. Datta, and P. K. Dutta, Opt. Express 14, 4721 (2006).
    [CrossRef]
  5. N. Park, J. W. Dawson, and K. J. Vahala, IEEE Photon. Technol. Lett. 4, 540 (1992).
    [CrossRef]
  6. I. S. Moskaleva, S. B. Mirova, V. V. Fedorova, and T. T. Basievb, Opt. Commun. 220, 161 (2003).
    [CrossRef]
  7. V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, Opt. Express 18, 694 (2010).
    [CrossRef]
  8. I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, IEEE J. Quantum Electron. 48, 129 (2012).
    [CrossRef]
  9. K. Thakulsukanant, B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, IEEE J. Lightwave Technol. 27, 631 (2009).
    [CrossRef]
  10. X. J. M. Leijtens, IET Optoelectron. 5, 202 (2011).
    [CrossRef]
  11. M. Sorel, P. J. R. Laybourn, A. Scir, S. Balle, G. Giuliani, R. Miglierina, and S. Donati, Opt. Lett. 27, 1992 (2002).
    [CrossRef]
  12. R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
    [CrossRef]
  13. M. Yousefi and D. Lenstra, IEEE J. Quantum Electron. 35, 970 (1999).
    [CrossRef]
  14. C. Qin and X. L. Zhang, Proc. SPIE 8559, 85590P (2012).
    [CrossRef]

2012

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, IEEE J. Quantum Electron. 48, 129 (2012).
[CrossRef]

C. Qin and X. L. Zhang, Proc. SPIE 8559, 85590P (2012).
[CrossRef]

2011

X. J. M. Leijtens, IET Optoelectron. 5, 202 (2011).
[CrossRef]

2010

2009

K. Thakulsukanant, B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, IEEE J. Lightwave Technol. 27, 631 (2009).
[CrossRef]

2007

2006

2003

I. S. Moskaleva, S. B. Mirova, V. V. Fedorova, and T. T. Basievb, Opt. Commun. 220, 161 (2003).
[CrossRef]

2002

2000

I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, IEEE J. Sel. Top. Quantum Electron. 6, 197 (2000).
[CrossRef]

1999

M. Yousefi and D. Lenstra, IEEE J. Quantum Electron. 35, 970 (1999).
[CrossRef]

1992

N. Park, J. W. Dawson, and K. J. Vahala, IEEE Photon. Technol. Lett. 4, 540 (1992).
[CrossRef]

1980

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
[CrossRef]

Alameh, K. E.

Ashour, M.

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, IEEE J. Quantum Electron. 48, 129 (2012).
[CrossRef]

Askraba, S.

Balle, S.

Basievb, T. T.

I. S. Moskaleva, S. B. Mirova, V. V. Fedorova, and T. T. Basievb, Opt. Commun. 220, 161 (2003).
[CrossRef]

Beri, S.

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, IEEE J. Quantum Electron. 48, 129 (2012).
[CrossRef]

Bolk, J.

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, IEEE J. Quantum Electron. 48, 129 (2012).
[CrossRef]

Bull, J. D.

Chang-Hasnain, C. J.

Chase, C.

Danckaert, J.

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, IEEE J. Quantum Electron. 48, 129 (2012).
[CrossRef]

Datta, P. K.

Dawson, J. W.

N. Park, J. W. Dawson, and K. J. Vahala, IEEE Photon. Technol. Lett. 4, 540 (1992).
[CrossRef]

Docter, B.

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, IEEE J. Quantum Electron. 48, 129 (2012).
[CrossRef]

Donati, S.

Dutta, P. K.

Ellis, A. D.

Ermakov, I. V.

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, IEEE J. Quantum Electron. 48, 129 (2012).
[CrossRef]

Fedorova, V. V.

I. S. Moskaleva, S. B. Mirova, V. V. Fedorova, and T. T. Basievb, Opt. Commun. 220, 161 (2003).
[CrossRef]

Garcia Gunning, F. C.

Giuliani, G.

Healy, T.

Hofmann, W.

Jang, I. F.

I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, IEEE J. Sel. Top. Quantum Electron. 6, 197 (2000).
[CrossRef]

Karagodsky, V.

Kobayashi, K.

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
[CrossRef]

Koyama, F.

Lang, R.

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
[CrossRef]

Laybourn, P. J. R.

Leijtens, X. J. M.

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, IEEE J. Quantum Electron. 48, 129 (2012).
[CrossRef]

X. J. M. Leijtens, IET Optoelectron. 5, 202 (2011).
[CrossRef]

Lenstra, D.

M. Yousefi and D. Lenstra, IEEE J. Quantum Electron. 35, 970 (1999).
[CrossRef]

Li, B.

K. Thakulsukanant, B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, IEEE J. Lightwave Technol. 27, 631 (2009).
[CrossRef]

Memon, M. I.

K. Thakulsukanant, B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, IEEE J. Lightwave Technol. 27, 631 (2009).
[CrossRef]

Mezosi, G.

K. Thakulsukanant, B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, IEEE J. Lightwave Technol. 27, 631 (2009).
[CrossRef]

Miglierina, R.

Mirova, S. B.

I. S. Moskaleva, S. B. Mirova, V. V. Fedorova, and T. T. Basievb, Opt. Commun. 220, 161 (2003).
[CrossRef]

Moskaleva, I. S.

I. S. Moskaleva, S. B. Mirova, V. V. Fedorova, and T. T. Basievb, Opt. Commun. 220, 161 (2003).
[CrossRef]

Mukhopadhyay, S.

Park, N.

N. Park, J. W. Dawson, and K. J. Vahala, IEEE Photon. Technol. Lett. 4, 540 (1992).
[CrossRef]

Pesala, B.

Pien, C. T.

I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, IEEE J. Sel. Top. Quantum Electron. 6, 197 (2000).
[CrossRef]

Qin, C.

C. Qin and X. L. Zhang, Proc. SPIE 8559, 85590P (2012).
[CrossRef]

Ray, A.

Saha, A.

Scir, A.

Shih, T. T.

I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, IEEE J. Sel. Top. Quantum Electron. 6, 197 (2000).
[CrossRef]

Sinha, N.

Smith, C. L.

Sorel, M.

K. Thakulsukanant, B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, IEEE J. Lightwave Technol. 27, 631 (2009).
[CrossRef]

M. Sorel, P. J. R. Laybourn, A. Scir, S. Balle, G. Giuliani, R. Miglierina, and S. Donati, Opt. Lett. 27, 1992 (2002).
[CrossRef]

Thakulsukanant, K.

K. Thakulsukanant, B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, IEEE J. Lightwave Technol. 27, 631 (2009).
[CrossRef]

Vahala, K. J.

N. Park, J. W. Dawson, and K. J. Vahala, IEEE Photon. Technol. Lett. 4, 540 (1992).
[CrossRef]

Venkataraayan, K.

Verschaffelt, G.

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, IEEE J. Quantum Electron. 48, 129 (2012).
[CrossRef]

Wang, C. Y.

I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, IEEE J. Sel. Top. Quantum Electron. 6, 197 (2000).
[CrossRef]

Wang, Z.

K. Thakulsukanant, B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, IEEE J. Lightwave Technol. 27, 631 (2009).
[CrossRef]

Yousefi, M.

M. Yousefi and D. Lenstra, IEEE J. Quantum Electron. 35, 970 (1999).
[CrossRef]

Yu, S.

K. Thakulsukanant, B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, IEEE J. Lightwave Technol. 27, 631 (2009).
[CrossRef]

Zhang, X. L.

C. Qin and X. L. Zhang, Proc. SPIE 8559, 85590P (2012).
[CrossRef]

IEEE J. Lightwave Technol.

K. Thakulsukanant, B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, IEEE J. Lightwave Technol. 27, 631 (2009).
[CrossRef]

IEEE J. Quantum Electron.

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
[CrossRef]

M. Yousefi and D. Lenstra, IEEE J. Quantum Electron. 35, 970 (1999).
[CrossRef]

I. V. Ermakov, S. Beri, M. Ashour, J. Danckaert, B. Docter, J. Bolk, X. J. M. Leijtens, and G. Verschaffelt, IEEE J. Quantum Electron. 48, 129 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, IEEE J. Sel. Top. Quantum Electron. 6, 197 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

N. Park, J. W. Dawson, and K. J. Vahala, IEEE Photon. Technol. Lett. 4, 540 (1992).
[CrossRef]

IET Optoelectron.

X. J. M. Leijtens, IET Optoelectron. 5, 202 (2011).
[CrossRef]

Opt. Commun.

I. S. Moskaleva, S. B. Mirova, V. V. Fedorova, and T. T. Basievb, Opt. Commun. 220, 161 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

C. Qin and X. L. Zhang, Proc. SPIE 8559, 85590P (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Scheme of the SRL with filtered optical feedback. (b) Mask layout of the device. (c) Alignment between the AWG channels and the LMs [8].

Fig. 2.
Fig. 2.

Optical spectra at a SRL bias current of 85 mA, a current of 10.74 mA injected in gate 4, and a current of 2.5 mA injected in gate 3. (a) DWE when the gate 2 current is 19 mA. (b) TWE when the gate 2 current is 19.59 mA. (c) SWE when the gate 2 current is 20.5 mA. A schematic representation of the AWG channels passband is plotted at the top.

Fig. 3.
Fig. 3.

Intensities of modes numerically obtained using the parameter values (a) η1=η2=6ns1 and θ1=θ2=θ3=0.5π as function of η3; (b) η1=η2=6ns1, η3=4ns1, and θ1=θ2=0.5π as function of θ3.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E˙mcw=κ(1+iα)[NGmcw1]Emcw(kd+ikcccw)Emccw+ηmEmcw(tτ)eiθm,
E˙mccw=κ(1+iα)[NGmccw1]Emccw(kd+ikccw)Emcw+ηmEmccw(tτ)eiθm,
1γN˙=μNNm=1n(Gmcw|Emcw|2+Gmccw|Emccw|2),

Metrics