Abstract

We implemented a photonic crystal nanofiber device by reversibly combining an optical nanofiber and a nanofabricated grating. Using the finite-difference time-domain method, we designed the system for minimal optical loss while tailoring the resonant wavelength and bandwidth of the device. Experimentally, we demonstrated that the combined system shows a strong photonic stop band in good agreement with numerical predictions. The resulting device may be used to realize strong light–matter coupling near the nanofiber surface.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, Nature 424, 839 (2003).
    [CrossRef]
  2. L. Novotny and B. Hecht, Principles of Nanophotonics (Cambridge University, 2012).
  3. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  4. V. S. C. Manga Rao and S. Hughes, Phys. Rev. Lett. 99, 193901 (2007).
    [CrossRef]
  5. C.-L. Hung, S. M. Meenhanm, D. E. Chang, O. Painter, and H. J. Kimble, arxiv:1301:5252.
  6. J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, Science 340, 1202 (2013).
    [CrossRef]
  7. Y.-F. Chen, X. Serey, R. Sarkar, P. Cheng, and D. Erickson, Nano Lett. 12, 1633 (2012).
    [CrossRef]
  8. K. P. Nayak and K. Hakuta, New J. Phys. 10, 053003 (2008).
    [CrossRef]
  9. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, Phys. Rev. Lett. 104, 203603 (2010).
    [CrossRef]
  10. A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacrote, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Phys. Rev. Lett. 109, 033603 (2012).
    [CrossRef]
  11. R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, Phys. Rev. Lett. 109, 063602 (2012).
    [CrossRef]
  12. F. Le Kien and K. Hakuta, Phys. Rev. A 80, 053826 (2009).
    [CrossRef]
  13. K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, Opt. Express 19, 14040 (2011).
    [CrossRef]
  14. K. P. Nayak and K. Hakuta, Opt. Express 21, 2480 (2013).
    [CrossRef]
  15. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]
  16. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
    [CrossRef]

2013 (2)

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, Science 340, 1202 (2013).
[CrossRef]

K. P. Nayak and K. Hakuta, Opt. Express 21, 2480 (2013).
[CrossRef]

2012 (3)

Y.-F. Chen, X. Serey, R. Sarkar, P. Cheng, and D. Erickson, Nano Lett. 12, 1633 (2012).
[CrossRef]

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacrote, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Phys. Rev. Lett. 109, 033603 (2012).
[CrossRef]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, Phys. Rev. Lett. 109, 063602 (2012).
[CrossRef]

2011 (1)

2010 (1)

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

2009 (1)

F. Le Kien and K. Hakuta, Phys. Rev. A 80, 053826 (2009).
[CrossRef]

2008 (1)

K. P. Nayak and K. Hakuta, New J. Phys. 10, 053003 (2008).
[CrossRef]

2007 (1)

V. S. C. Manga Rao and S. Hughes, Phys. Rev. Lett. 99, 193901 (2007).
[CrossRef]

2003 (1)

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
[CrossRef]

1997 (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Akimov, A. V.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, Science 340, 1202 (2013).
[CrossRef]

Alton, D. J.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacrote, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Phys. Rev. Lett. 109, 033603 (2012).
[CrossRef]

Chang, D. E.

C.-L. Hung, S. M. Meenhanm, D. E. Chang, O. Painter, and H. J. Kimble, arxiv:1301:5252.

Chen, Y.-F.

Y.-F. Chen, X. Serey, R. Sarkar, P. Cheng, and D. Erickson, Nano Lett. 12, 1633 (2012).
[CrossRef]

Cheng, P.

Y.-F. Chen, X. Serey, R. Sarkar, P. Cheng, and D. Erickson, Nano Lett. 12, 1633 (2012).
[CrossRef]

Choi, K. S.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacrote, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Phys. Rev. Lett. 109, 033603 (2012).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
[CrossRef]

Dawkins, S. T.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

de Leon, N. P.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, Science 340, 1202 (2013).
[CrossRef]

Ding, D.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacrote, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Phys. Rev. Lett. 109, 033603 (2012).
[CrossRef]

Erdogan, T.

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Erickson, D.

Y.-F. Chen, X. Serey, R. Sarkar, P. Cheng, and D. Erickson, Nano Lett. 12, 1633 (2012).
[CrossRef]

Feist, J.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, Science 340, 1202 (2013).
[CrossRef]

Goban, A.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacrote, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Phys. Rev. Lett. 109, 033603 (2012).
[CrossRef]

Gullans, M.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, Science 340, 1202 (2013).
[CrossRef]

Hakuta, K.

K. P. Nayak and K. Hakuta, Opt. Express 21, 2480 (2013).
[CrossRef]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, Phys. Rev. Lett. 109, 063602 (2012).
[CrossRef]

K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, Opt. Express 19, 14040 (2011).
[CrossRef]

F. Le Kien and K. Hakuta, Phys. Rev. A 80, 053826 (2009).
[CrossRef]

K. P. Nayak and K. Hakuta, New J. Phys. 10, 053003 (2008).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nanophotonics (Cambridge University, 2012).

Hughes, S.

V. S. C. Manga Rao and S. Hughes, Phys. Rev. Lett. 99, 193901 (2007).
[CrossRef]

Hung, C.-L.

C.-L. Hung, S. M. Meenhanm, D. E. Chang, O. Painter, and H. J. Kimble, arxiv:1301:5252.

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Kawai, Y.

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
[CrossRef]

Kimble, H. J.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacrote, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Phys. Rev. Lett. 109, 033603 (2012).
[CrossRef]

C.-L. Hung, S. M. Meenhanm, D. E. Chang, O. Painter, and H. J. Kimble, arxiv:1301:5252.

Lacrote, C.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacrote, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Phys. Rev. Lett. 109, 033603 (2012).
[CrossRef]

Le Kien, F.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, Phys. Rev. Lett. 109, 063602 (2012).
[CrossRef]

K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, Opt. Express 19, 14040 (2011).
[CrossRef]

F. Le Kien and K. Hakuta, Phys. Rev. A 80, 053826 (2009).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
[CrossRef]

Lukin, M. D.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, Science 340, 1202 (2013).
[CrossRef]

Manga Rao, V. S. C.

V. S. C. Manga Rao and S. Hughes, Phys. Rev. Lett. 99, 193901 (2007).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Meenhanm, S. M.

C.-L. Hung, S. M. Meenhanm, D. E. Chang, O. Painter, and H. J. Kimble, arxiv:1301:5252.

Miyazaki, H. T.

Morinaga, M.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, Phys. Rev. Lett. 109, 063602 (2012).
[CrossRef]

Nakajima, K.

Nayak, K. P.

Novotny, L.

L. Novotny and B. Hecht, Principles of Nanophotonics (Cambridge University, 2012).

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
[CrossRef]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
[CrossRef]

C.-L. Hung, S. M. Meenhanm, D. E. Chang, O. Painter, and H. J. Kimble, arxiv:1301:5252.

Pototschnig, M.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacrote, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Phys. Rev. Lett. 109, 033603 (2012).
[CrossRef]

Rauschenbeutel, A.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

Reitz, D.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

Sagué, G.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

Sarkar, R.

Y.-F. Chen, X. Serey, R. Sarkar, P. Cheng, and D. Erickson, Nano Lett. 12, 1633 (2012).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
[CrossRef]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

Serey, X.

Y.-F. Chen, X. Serey, R. Sarkar, P. Cheng, and D. Erickson, Nano Lett. 12, 1633 (2012).
[CrossRef]

Stern, N. P.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacrote, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Phys. Rev. Lett. 109, 033603 (2012).
[CrossRef]

Sugimoto, Y.

Thiele, T.

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacrote, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Phys. Rev. Lett. 109, 033603 (2012).
[CrossRef]

Thompson, J. D.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, Science 340, 1202 (2013).
[CrossRef]

Tiecke, T. G.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, Science 340, 1202 (2013).
[CrossRef]

Vahala, K. J.

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef]

Vetsch, E.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

Vuletic, V.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, Science 340, 1202 (2013).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Yalla, R.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, Phys. Rev. Lett. 109, 063602 (2012).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
[CrossRef]

Zibrov, A. S.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, Science 340, 1202 (2013).
[CrossRef]

J. Lightwave Technol. (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Nano Lett. (1)

Y.-F. Chen, X. Serey, R. Sarkar, P. Cheng, and D. Erickson, Nano Lett. 12, 1633 (2012).
[CrossRef]

Nature (1)

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef]

New J. Phys. (1)

K. P. Nayak and K. Hakuta, New J. Phys. 10, 053003 (2008).
[CrossRef]

Opt. Express (2)

Phys. Rev. A (1)

F. Le Kien and K. Hakuta, Phys. Rev. A 80, 053826 (2009).
[CrossRef]

Phys. Rev. Lett. (4)

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef]

A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacrote, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Phys. Rev. Lett. 109, 033603 (2012).
[CrossRef]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, Phys. Rev. Lett. 109, 063602 (2012).
[CrossRef]

V. S. C. Manga Rao and S. Hughes, Phys. Rev. Lett. 99, 193901 (2007).
[CrossRef]

Science (2)

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, Science 340, 1202 (2013).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999).
[CrossRef]

Other (3)

C.-L. Hung, S. M. Meenhanm, D. E. Chang, O. Painter, and H. J. Kimble, arxiv:1301:5252.

L. Novotny and B. Hecht, Principles of Nanophotonics (Cambridge University, 2012).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental concept of an external grating combined with an optical nanofiber, forming a device with PhC characteristics. (b) and (c) FDTD simulation results for the transmission T (blue curve) and reflection R (red curve) spectra for x and y polarizations, respectively, with grating parameters as defined in the main text. (d) and (e) FDTD simulation results for the maximum reflectivity R0 (red curve) and optical loss L0 (green curve) as a function of the grating duty cycle α and the grating slat depth d, respectively. In both cases, the input mode was y-polarized.

Fig. 2.
Fig. 2.

(a) SEM image of the device that clearly shows the grating and substrate regions along with the nanofiber. (b) Schematic diagram of the experimental setup. Light from a supercontinuum source (SC) travels through a beam splitter (BS) and an inline polarizer (IP) and is coupled into the nanofiber, which is fixed on an xz stage mounted on an inverted microscope. The transmitted and reflected light is coupled to single-mode fibers (SMFs) and the corresponding spectra are measured by a Fourier transform spectrum analyzer (FTSA) and an optical multichannel analyzer (OMA), respectively. A full explanation of all the symbols is provided in the text.

Fig. 3.
Fig. 3.

(a) and (b) Experimentally measured transmission (blue curve) and reflection (red curve) spectra for the grating placed near the nanofiber center (nominal nanofiber diameter of 570 nm) for x- and y-polarized light, respectively.

Fig. 4.
Fig. 4.

(a) Reflection spectra taken at a number of different z values. (b) Peak reflection wavelength λ0 (blue crosses) and the peak height R0 (green circles) as a function of the nanofiber diameter 2a. The predicitons of CMT are shown for λ0 by a solid blue curve and for R0 by a solid green curve.

Metrics