Abstract

We have developed a liquid immersion Lloyd’s mirror interference lithography system to fabricate subwavelength periodic nanostructures. In this approach, we construct the Lloyd’s mirror interferometer within a liquid medium to increase the ambient index. The light wavelength is scaled by the refractive index of the immersion fluid, reducing the minimum interference pattern period and increasing the spatial resolution. The all-liquid system ensures continuous fluid contact with the sample without an external mechanism, allows rapid adjustment of pattern period with subwavelength resolution, and retains the passive vibration-correction capability of Lloyd’s mirror interferometers. Using this approach, we have successfully fabricated a grating structure with 112 nm period using a laser with 325 nm wavelength, attaining a numerical aperture of 1.45. The proposed immersion strategy can be adapted to improve pattern resolution of more complex interference lithography systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Heilmann, M. Ahn, A. Bruccoleri, C.-H. Chang, E. M. Gullikson, P. Mukherjee, and M. L. Schattenburg, Appl. Opt. 50, 1364 (2011).
    [CrossRef]
  2. C. Braig, T. Käsebier, E.-B. Kley, and A. Tünnermann, Opt. Express 19, 14008 (2011).
    [CrossRef]
  3. R. K. Heilmann, M. Ahn, E. M. Gullikson, and M. L. Schattenburg, Opt. Express 16, 8658 (2008).
    [CrossRef]
  4. A. R. Parker and H. E. Townley, Nat. Nanotechnol. 2, 347 (2007).
    [CrossRef]
  5. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2, 770 (2007).
    [CrossRef]
  6. K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, ACS Nano 6, 3789 (2012).
    [CrossRef]
  7. K. Liu and L. Jiang, Nano Today 6(2), 155 (2011).
    [CrossRef]
  8. D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Mater. 6, 263 (2010).
    [CrossRef]
  9. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).
    [CrossRef]
  10. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).
    [CrossRef]
  11. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, Nature 429, 538 (2004).
    [CrossRef]
  12. J.-H. Jang, C. K. Ullal, T. Gorishnyy, V. V. Tsukruk, and E. L. Thomas, Nano Lett. 6, 740 (2006).
    [CrossRef]
  13. H. I. Smith, Phys. E 11, 104 (2001).
    [CrossRef]
  14. C. G. Chen, P. T. Konkola, R. K. Heilmann, C. Joo, and M. L. Schattenburg, Proc. SPIE 4936, 126 (2002).
    [CrossRef]
  15. R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, Nanotechnology 15, S504 (2004).
    [CrossRef]
  16. J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027 (2007).
    [CrossRef]
  17. T. B. O’Reilly and H. I. Smith, J. Vac. Sci. Technol. B 26, 2131 (2008).
    [CrossRef]
  18. J. de Boor, N. Geyer, U. Gösele, and V. Schmidt, Opt. Lett. 34, 1783 (2009).
    [CrossRef]
  19. I. Wathuthanthri, W. Mao, and C.-H. Choi, Opt. Lett. 36, 1593 (2011).
    [CrossRef]
  20. H. H. Solak, J. Phys. D 39, R171 (2006).
    [CrossRef]
  21. A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
    [CrossRef]
  22. P. W. Wachulak, M. G. Capeluto, M. C. Marconi, C. S. Menoni, and J. J. Rocca, Opt. Express 15, 3465 (2007).
    [CrossRef]
  23. C.-H. Chang, Y. Zhao, R. K. Heilmann, and M. L. Schattenburg, Opt. Lett. 33, 1572 (2008).
    [CrossRef]
  24. R. French, Annu. Rev. Mater. Res. 39, 93 (2009).
    [CrossRef]
  25. Y. Wei and R. L. Brainard, Advanced Processes for 193 nm Immersion Lithography (SPIE, 2009).
  26. J. de Boor, D. S. Kim, and V. Schmidt, Opt. Lett. 35, 3450 (2010).
    [CrossRef]
  27. T. M. Bloomstein, M. F. Marchant, S. Deneault, D. E. Hardy, and M. Rothschild, Opt. Express 14, 6434 (2006).
    [CrossRef]
  28. P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, J. Microlithogr. Microfabr. Microsyst. 10, 033012 (2011).
    [CrossRef]

2012

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, ACS Nano 6, 3789 (2012).
[CrossRef]

2011

2010

J. de Boor, D. S. Kim, and V. Schmidt, Opt. Lett. 35, 3450 (2010).
[CrossRef]

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Mater. 6, 263 (2010).
[CrossRef]

2009

2008

2007

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027 (2007).
[CrossRef]

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

A. R. Parker and H. E. Townley, Nat. Nanotechnol. 2, 347 (2007).
[CrossRef]

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2, 770 (2007).
[CrossRef]

P. W. Wachulak, M. G. Capeluto, M. C. Marconi, C. S. Menoni, and J. J. Rocca, Opt. Express 15, 3465 (2007).
[CrossRef]

2006

T. M. Bloomstein, M. F. Marchant, S. Deneault, D. E. Hardy, and M. Rothschild, Opt. Express 14, 6434 (2006).
[CrossRef]

H. H. Solak, J. Phys. D 39, R171 (2006).
[CrossRef]

J.-H. Jang, C. K. Ullal, T. Gorishnyy, V. V. Tsukruk, and E. L. Thomas, Nano Lett. 6, 740 (2006).
[CrossRef]

2004

R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, Nanotechnology 15, S504 (2004).
[CrossRef]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, Nature 429, 538 (2004).
[CrossRef]

2002

C. G. Chen, P. T. Konkola, R. K. Heilmann, C. Joo, and M. L. Schattenburg, Proc. SPIE 4936, 126 (2002).
[CrossRef]

2001

H. I. Smith, Phys. E 11, 104 (2001).
[CrossRef]

2000

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).
[CrossRef]

1998

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).
[CrossRef]

Ahn, M.

Barbastathis, G.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, ACS Nano 6, 3789 (2012).
[CrossRef]

Bettotti, P.

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).
[CrossRef]

Blaikie, R. J.

P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, J. Microlithogr. Microfabr. Microsyst. 10, 033012 (2011).
[CrossRef]

Bloomstein, T. M.

Braig, C.

Brainard, R. L.

Y. Wei and R. L. Brainard, Advanced Processes for 193 nm Immersion Lithography (SPIE, 2009).

Bruccoleri, A.

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).
[CrossRef]

Capeluto, M. G.

Chang, C.-H.

Chang, Y.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2, 770 (2007).
[CrossRef]

Chattopadhyay, S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2, 770 (2007).
[CrossRef]

Chen, C. G.

R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, Nanotechnology 15, S504 (2004).
[CrossRef]

C. G. Chen, P. T. Konkola, R. K. Heilmann, C. Joo, and M. L. Schattenburg, Proc. SPIE 4936, 126 (2002).
[CrossRef]

Chen, K.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2, 770 (2007).
[CrossRef]

Chen, L.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2, 770 (2007).
[CrossRef]

Chen, Q.-D.

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Mater. 6, 263 (2010).
[CrossRef]

Choi, C.-H.

Choi, H. J.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, ACS Nano 6, 3789 (2012).
[CrossRef]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).
[CrossRef]

Cohen, R. E.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, ACS Nano 6, 3789 (2012).
[CrossRef]

de Boor, J.

Deneault, S.

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).
[CrossRef]

French, R.

R. French, Annu. Rev. Mater. Res. 39, 93 (2009).
[CrossRef]

Geyer, N.

Gorishnyy, T.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027 (2007).
[CrossRef]

J.-H. Jang, C. K. Ullal, T. Gorishnyy, V. V. Tsukruk, and E. L. Thomas, Nano Lett. 6, 740 (2006).
[CrossRef]

Gösele, U.

Gullikson, E. M.

Hardy, D. E.

Heilmann, R. K.

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).
[CrossRef]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).
[CrossRef]

Holzwarth, C. W.

P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, J. Microlithogr. Microfabr. Microsyst. 10, 033012 (2011).
[CrossRef]

Hsu, C.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2, 770 (2007).
[CrossRef]

Hsu, Y.-K.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2, 770 (2007).
[CrossRef]

Huang, Y.-F.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2, 770 (2007).
[CrossRef]

Ippen, E. P.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, Nature 429, 538 (2004).
[CrossRef]

Jang, J.-H.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027 (2007).
[CrossRef]

J.-H. Jang, C. K. Ullal, T. Gorishnyy, V. V. Tsukruk, and E. L. Thomas, Nano Lett. 6, 740 (2006).
[CrossRef]

Jen, Y.-J.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2, 770 (2007).
[CrossRef]

Jiang, L.

K. Liu and L. Jiang, Nano Today 6(2), 155 (2011).
[CrossRef]

Jiao, J.

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Mater. 6, 263 (2010).
[CrossRef]

Joannopoulos, J. D.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, Nature 429, 538 (2004).
[CrossRef]

Johnson, S. G.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, Nature 429, 538 (2004).
[CrossRef]

Joo, C.

C. G. Chen, P. T. Konkola, R. K. Heilmann, C. Joo, and M. L. Schattenburg, Proc. SPIE 4936, 126 (2002).
[CrossRef]

Käsebier, T.

Kim, D. S.

Kley, E.-B.

Koh, C.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027 (2007).
[CrossRef]

Konkola, P. T.

R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, Nanotechnology 15, S504 (2004).
[CrossRef]

C. G. Chen, P. T. Konkola, R. K. Heilmann, C. Joo, and M. L. Schattenburg, Proc. SPIE 4936, 126 (2002).
[CrossRef]

Kooi, S.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027 (2007).
[CrossRef]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).
[CrossRef]

Lee, C.-S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2, 770 (2007).
[CrossRef]

Lidorikis, E.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, Nature 429, 538 (2004).
[CrossRef]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).
[CrossRef]

Lin, X.-F.

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Mater. 6, 263 (2010).
[CrossRef]

Liu, K.

K. Liu and L. Jiang, Nano Today 6(2), 155 (2011).
[CrossRef]

Liu, T.-A.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2, 770 (2007).
[CrossRef]

Lo, H.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2, 770 (2007).
[CrossRef]

Maldovan, M.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027 (2007).
[CrossRef]

Mao, W.

Marchant, M. F.

Marconi, M. C.

McKinley, G. H.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, ACS Nano 6, 3789 (2012).
[CrossRef]

Mehrotra, P.

P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, J. Microlithogr. Microfabr. Microsyst. 10, 033012 (2011).
[CrossRef]

Menoni, C. S.

Mukherjee, P.

Noda, S.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).
[CrossRef]

O’Reilly, T. B.

T. B. O’Reilly and H. I. Smith, J. Vac. Sci. Technol. B 26, 2131 (2008).
[CrossRef]

Pan, C.-L.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2, 770 (2007).
[CrossRef]

Park, K.-C.

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, ACS Nano 6, 3789 (2012).
[CrossRef]

Parker, A. R.

A. R. Parker and H. E. Townley, Nat. Nanotechnol. 2, 347 (2007).
[CrossRef]

Pavesi, L.

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

Peng, C.-Y.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2, 770 (2007).
[CrossRef]

Qi, M.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, Nature 429, 538 (2004).
[CrossRef]

Rakich, P. T.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, Nature 429, 538 (2004).
[CrossRef]

Reale, A.

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

Reale, L.

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

Ritucci, A.

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

Rocca, J. J.

Rothschild, M.

Schattenburg, M. L.

Schmidt, V.

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).
[CrossRef]

Smith, H. I.

T. B. O’Reilly and H. I. Smith, J. Vac. Sci. Technol. B 26, 2131 (2008).
[CrossRef]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, Nature 429, 538 (2004).
[CrossRef]

H. I. Smith, Phys. E 11, 104 (2001).
[CrossRef]

Solak, H. H.

H. H. Solak, J. Phys. D 39, R171 (2006).
[CrossRef]

Sun, H.-B.

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Mater. 6, 263 (2010).
[CrossRef]

Thomas, E. L.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027 (2007).
[CrossRef]

J.-H. Jang, C. K. Ullal, T. Gorishnyy, V. V. Tsukruk, and E. L. Thomas, Nano Lett. 6, 740 (2006).
[CrossRef]

Tomassetti, G.

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).
[CrossRef]

Townley, H. E.

A. R. Parker and H. E. Townley, Nat. Nanotechnol. 2, 347 (2007).
[CrossRef]

Tsukruk, V. V.

J.-H. Jang, C. K. Ullal, T. Gorishnyy, V. V. Tsukruk, and E. L. Thomas, Nano Lett. 6, 740 (2006).
[CrossRef]

Tucceri, P.

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

Tünnermann, A.

Ullal, C. K.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027 (2007).
[CrossRef]

J.-H. Jang, C. K. Ullal, T. Gorishnyy, V. V. Tsukruk, and E. L. Thomas, Nano Lett. 6, 740 (2006).
[CrossRef]

Wachulak, P. W.

Wathuthanthri, I.

Wei, Y.

Y. Wei and R. L. Brainard, Advanced Processes for 193 nm Immersion Lithography (SPIE, 2009).

Wu, D.

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Mater. 6, 263 (2010).
[CrossRef]

Xia, H.

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Mater. 6, 263 (2010).
[CrossRef]

Xu, B.-B.

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Mater. 6, 263 (2010).
[CrossRef]

Xu, Y.

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Mater. 6, 263 (2010).
[CrossRef]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).
[CrossRef]

Zhao, Y.

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).
[CrossRef]

Zuppella, P.

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

ACS Nano

K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, ACS Nano 6, 3789 (2012).
[CrossRef]

Adv. Funct. Mater.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027 (2007).
[CrossRef]

Annu. Rev. Mater. Res.

R. French, Annu. Rev. Mater. Res. 39, 93 (2009).
[CrossRef]

Appl. Opt.

J. Appl. Phys.

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

J. Microlithogr. Microfabr. Microsyst.

P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, J. Microlithogr. Microfabr. Microsyst. 10, 033012 (2011).
[CrossRef]

J. Phys. D

H. H. Solak, J. Phys. D 39, R171 (2006).
[CrossRef]

J. Vac. Sci. Technol. B

T. B. O’Reilly and H. I. Smith, J. Vac. Sci. Technol. B 26, 2131 (2008).
[CrossRef]

Nano Lett.

J.-H. Jang, C. K. Ullal, T. Gorishnyy, V. V. Tsukruk, and E. L. Thomas, Nano Lett. 6, 740 (2006).
[CrossRef]

Nano Today

K. Liu and L. Jiang, Nano Today 6(2), 155 (2011).
[CrossRef]

Nanotechnology

R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, Nanotechnology 15, S504 (2004).
[CrossRef]

Nat. Nanotechnol.

A. R. Parker and H. E. Townley, Nat. Nanotechnol. 2, 347 (2007).
[CrossRef]

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2, 770 (2007).
[CrossRef]

Nature

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).
[CrossRef]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, Nature 429, 538 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. E

H. I. Smith, Phys. E 11, 104 (2001).
[CrossRef]

Proc. SPIE

C. G. Chen, P. T. Konkola, R. K. Heilmann, C. Joo, and M. L. Schattenburg, Proc. SPIE 4936, 126 (2002).
[CrossRef]

Science

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).
[CrossRef]

Soft Mater.

D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Mater. 6, 263 (2010).
[CrossRef]

Other

Y. Wei and R. L. Brainard, Advanced Processes for 193 nm Immersion Lithography (SPIE, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of standard LIL. Two beams interfere on the substrate to form a sinusoidal intensity pattern with period λ/2sinθ. (b) Schematic of proposed ILIL setup with Lloyd’s mirror interferometer in a fluid medium with high refractive index (n>1). The period of sinusoidal intensity pattern formed on the substrate in the immersion fluid is reduced by a factor equal to the fluid index.

Fig. 2.
Fig. 2.

Top view micrographs for fabrication results obtained using proposed ILIL setup at λ=325nm for (a)–(c) DI water (n=1.33) and (d)–(f) immersion oil (n=1.51) at various incident angles. Grating structures patterned in DI water with (a) 170 nm period at θ=46°, (b) 160 nm period at θ=49.8°, and (c) 150 nm period at θ=54.5°. Grating structures patterned in immersion oil with (d) 140 nm period at θ=50.5°, (e) 130 nm period at θ=56°, and (f) 120 nm period at θ=64.5°.

Fig. 3.
Fig. 3.

Smallest grating period obtained using proposed setup with immersion oil with n=1.51 and incidence angle of 75°, achieving a numerical aperture of 1.45. (a) Top view of the sample shows grating structure. (b) Cross-sectional view of the sample showing the profile of grating structure. (c) The materials used are indicated, with the formation of 1D periodic structure in the PR layer.

Fig. 4.
Fig. 4.

Period reduction with the use of immersion fluid. Continuous lines show numerical model of grating period (Λ) as a function of angle of incidence (θ) for λ=325nm. The discrete points are experimental results for respective immersion media.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Λ=λ2nsinθ,

Metrics