Abstract

We present a novel concept to generate sub-picosecond pulses from a passively Q-switched Nd:YVO4 microchip laser system with an adjustable wavelength shift up to a few tens of nanometers around the original emission wavelength of 1064 nm. This concept comprises two stages: one that carries out a nonlinear compression of fiber-amplified microchip pulses and a subsequent stage in which the compressed pulses are coupled into a further waveguide structure followed by a bandpass filter. In a proof-of-principle experiment, pedestal-free 0.62 ps long pulses have been demonstrated with a wavelength shift to 1045 nm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, Opt. Lett. 22, 381 (1997).
    [CrossRef]
  2. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, J. Opt. Soc. Am. B 16, 376 (1999).
    [CrossRef]
  3. A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
    [CrossRef]
  4. A. Steinmetz, D. Nodop, A. Martin, J. Limpert, and A. Tünnermann, Opt. Lett. 35, 2885 (2010).
    [CrossRef]
  5. A. Steinmetz, F. Jansen, F. Stutzki, R. Lehneis, J. Limpert, and A. Tünnermann, Opt. Lett. 37, 2550 (2012).
    [CrossRef]
  6. R. Lehneis, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Lett. 37, 4401 (2012).
    [CrossRef]
  7. J. T. Mok, I. C. M. Littler, E. Tsoy, and B. J. Eggleton, Opt. Lett. 30, 2457 (2005).
    [CrossRef]
  8. F. Doutre, D. Pagnoux, V. Couderc, A. Tonello, B. Vergne, and A. Jalocha, Opt. Lett. 33, 1789 (2008).
    [CrossRef]
  9. Y.-J. Song, M.-L. Hu, C.-L. Wang, Z. Tian, Q.-R. Xing, L. Chai, and C.-Y. Wang, IEEE Photon. Technol. Lett. 20, 1088 (2008).
    [CrossRef]

2012

2010

2009

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

2008

Y.-J. Song, M.-L. Hu, C.-L. Wang, Z. Tian, Q.-R. Xing, L. Chai, and C.-Y. Wang, IEEE Photon. Technol. Lett. 20, 1088 (2008).
[CrossRef]

F. Doutre, D. Pagnoux, V. Couderc, A. Tonello, B. Vergne, and A. Jalocha, Opt. Lett. 33, 1789 (2008).
[CrossRef]

2005

1999

1997

Braun, B.

Chai, L.

Y.-J. Song, M.-L. Hu, C.-L. Wang, Z. Tian, Q.-R. Xing, L. Chai, and C.-Y. Wang, IEEE Photon. Technol. Lett. 20, 1088 (2008).
[CrossRef]

Couderc, V.

Doutre, F.

Eggleton, B. J.

Fluck, R.

Gini, E.

Hohmuth, R.

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

Hu, M.-L.

Y.-J. Song, M.-L. Hu, C.-L. Wang, Z. Tian, Q.-R. Xing, L. Chai, and C.-Y. Wang, IEEE Photon. Technol. Lett. 20, 1088 (2008).
[CrossRef]

Jalocha, A.

Jansen, F.

Jauregui, C.

Kärtner, F. X.

Keller, U.

Lehneis, R.

Limpert, J.

Littler, I. C. M.

Martin, A.

Mok, J. T.

Moser, M.

Nodop, D.

A. Steinmetz, D. Nodop, A. Martin, J. Limpert, and A. Tünnermann, Opt. Lett. 35, 2885 (2010).
[CrossRef]

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

Pagnoux, D.

Paschotta, R.

Richter, W.

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

Song, Y.-J.

Y.-J. Song, M.-L. Hu, C.-L. Wang, Z. Tian, Q.-R. Xing, L. Chai, and C.-Y. Wang, IEEE Photon. Technol. Lett. 20, 1088 (2008).
[CrossRef]

Spühler, G. J.

Steinmetz, A.

Stutzki, F.

Tian, Z.

Y.-J. Song, M.-L. Hu, C.-L. Wang, Z. Tian, Q.-R. Xing, L. Chai, and C.-Y. Wang, IEEE Photon. Technol. Lett. 20, 1088 (2008).
[CrossRef]

Tonello, A.

Tsoy, E.

Tünnermann, A.

Vergne, B.

Wang, C.-L.

Y.-J. Song, M.-L. Hu, C.-L. Wang, Z. Tian, Q.-R. Xing, L. Chai, and C.-Y. Wang, IEEE Photon. Technol. Lett. 20, 1088 (2008).
[CrossRef]

Wang, C.-Y.

Y.-J. Song, M.-L. Hu, C.-L. Wang, Z. Tian, Q.-R. Xing, L. Chai, and C.-Y. Wang, IEEE Photon. Technol. Lett. 20, 1088 (2008).
[CrossRef]

Xing, Q.-R.

Y.-J. Song, M.-L. Hu, C.-L. Wang, Z. Tian, Q.-R. Xing, L. Chai, and C.-Y. Wang, IEEE Photon. Technol. Lett. 20, 1088 (2008).
[CrossRef]

Zhang, G.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Illustration of the instantaneous frequency change Δ ω ( t ) versus time t for a SPM-broadened Gaussian pulse; Δ ω Filter denotes the bandwidth of the filter and Δ t Pulse the filtered pulse duration.

Fig. 2.
Fig. 2.

Scheme of the experimental setup showing the fiber-amplified microchip laser (MCL), the grating compressor, the single-mode (SM) fiber, and the bandpass filter. An optical spectrum analyzer (OSA) and two background-free intensity autocorrelators (ACs) are used for characterization.

Fig. 3.
Fig. 3.

(a) Normalized photodiode (PD) signal of the fiber-amplified microchip pulses and (b) corresponding normalized SPM spectrum.

Fig. 4.
Fig. 4.

(a) Normalized autocorrelation (AC) trace of the compressed pulses and (b) normalized SPM spectrum after propagation in the passive fiber.

Fig. 5.
Fig. 5.

(a) Normalized filtered spectrum when filtering at the lower edge of the SPM-broadened spectrum (also shown in the panel) and (b) corresponding normalized autocorrelation (AC) trace of the filtered pulses.

Metrics