Abstract

We present a simple and robust structure for realizing asymmetric Fano transmission characteristics in photonic crystal waveguide-cavity structures. The use of Fano resonances for optical switching is analyzed using temporal coupled mode theory in combination with three-dimensional finite difference time domain simulations taking into account the signal bandwidth. The results suggest a significant energy reduction by employing Fano resonances compared to more well established Lorentzian resonance structures. A specific example of a Kerr nonlinearity shows an order of magnitude energy reduction.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities

Kengo Nozaki, Akihiko Shinya, Shinji Matsuo, Tomonari Sato, Eiichi Kuramochi, and Masaya Notomi
Opt. Express 21(10) 11877-11888 (2013)

Ultrafast all-optical modulation using a photonic-crystal Fano structure with broken symmetry

Yi Yu, Hao Hu, Leif Katsuo Oxenløwe, Kresten Yvind, and Jesper Mork
Opt. Lett. 40(10) 2357-2360 (2015)

Coupled Fano resonators

Xiaoguang Tu, Landobasa Y. Mario, and Ting Mei
Opt. Express 18(18) 18820-18831 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription