Abstract

We propose a method to enhance the resolution and break the diffraction limit. The superresolution imaging is realized by incorporating total internal reflection (TIR) illumination with a passive spatial frequency shift mechanism. Meanwhile, TIR supplies a surface field with a limited penetration depth, which demonstrates that the axial resolution can be improved simultaneously. The superresolution capability is confirmed both theoretically and experimentally. Compared with microfiber-based former work, this idea possesses promising merits, providing a wider viewing field and a simpler configuration for variable illumination orientations, thereby implying abundant application potentials.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, Arch. Mikrosk. Anat. 9, 413 (1873).
    [CrossRef]
  2. M. Lauterbach, Opt. Nanosc. 1, 8 (2012).
    [CrossRef]
  3. S. W. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994).
    [CrossRef]
  4. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
    [CrossRef]
  5. M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).
    [CrossRef]
  6. M. G. Gustafsson, Proc. Natl. Acad. Sci. USA 102, 13081 (2005).
    [CrossRef]
  7. M. G. L. Gustafsson, J. Microsc. 198, 82 (2000).
    [CrossRef]
  8. T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, Proc. Natl. Acad. Sci. USA 106, 22287 (2009).
    [CrossRef]
  9. G. Di Francia, Nuovo Cimento 9, 426 (1952).
  10. E. A. Ash and G. Nicholls, Nature 237, 510 (1972).
    [CrossRef]
  11. I. I. Smolyaninov, C. C. Davis, J. Elliott, and A. V. Zayats, Opt. Lett. 30, 382 (2005).
    [CrossRef]
  12. I. I. Smolyaninov, C. C. Davis, and A. V. Zayats, New J. Phys. 7, 175 (2005).
    [CrossRef]
  13. X. Zhang and Z. W. Liu, Nat. Mater. 7, 435 (2008).
    [CrossRef]
  14. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
    [CrossRef]
  15. X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, Appl. Phys. Lett. 99, 203102 (2011).
    [CrossRef]
  16. X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, Appl. Phys. Lett. 102, 013104 (2013).
    [CrossRef]
  17. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  18. L. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, Eur. Biophys. J. 38, 807 (2009).
    [CrossRef]

2013

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, Appl. Phys. Lett. 102, 013104 (2013).
[CrossRef]

2012

M. Lauterbach, Opt. Nanosc. 1, 8 (2012).
[CrossRef]

2011

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, Appl. Phys. Lett. 99, 203102 (2011).
[CrossRef]

2009

L. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, Eur. Biophys. J. 38, 807 (2009).
[CrossRef]

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, Proc. Natl. Acad. Sci. USA 106, 22287 (2009).
[CrossRef]

2008

X. Zhang and Z. W. Liu, Nat. Mater. 7, 435 (2008).
[CrossRef]

2006

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[CrossRef]

M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).
[CrossRef]

2005

M. G. Gustafsson, Proc. Natl. Acad. Sci. USA 102, 13081 (2005).
[CrossRef]

I. I. Smolyaninov, C. C. Davis, and A. V. Zayats, New J. Phys. 7, 175 (2005).
[CrossRef]

I. I. Smolyaninov, C. C. Davis, J. Elliott, and A. V. Zayats, Opt. Lett. 30, 382 (2005).
[CrossRef]

2000

M. G. L. Gustafsson, J. Microsc. 198, 82 (2000).
[CrossRef]

1994

1972

E. A. Ash and G. Nicholls, Nature 237, 510 (1972).
[CrossRef]

1952

G. Di Francia, Nuovo Cimento 9, 426 (1952).

1873

E. Abbe, Arch. Mikrosk. Anat. 9, 413 (1873).
[CrossRef]

Abbe, E.

E. Abbe, Arch. Mikrosk. Anat. 9, 413 (1873).
[CrossRef]

Ash, E. A.

E. A. Ash and G. Nicholls, Nature 237, 510 (1972).
[CrossRef]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).
[CrossRef]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[CrossRef]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[CrossRef]

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Colyer, R.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, Proc. Natl. Acad. Sci. USA 106, 22287 (2009).
[CrossRef]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, C. C. Davis, and A. V. Zayats, New J. Phys. 7, 175 (2005).
[CrossRef]

I. I. Smolyaninov, C. C. Davis, J. Elliott, and A. V. Zayats, Opt. Lett. 30, 382 (2005).
[CrossRef]

Dertinger, T.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, Proc. Natl. Acad. Sci. USA 106, 22287 (2009).
[CrossRef]

Di Francia, G.

G. Di Francia, Nuovo Cimento 9, 426 (1952).

Elliott, J.

Enderlein, J.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, Proc. Natl. Acad. Sci. USA 106, 22287 (2009).
[CrossRef]

Guo, W.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Gustafsson, M. G.

M. G. Gustafsson, Proc. Natl. Acad. Sci. USA 102, 13081 (2005).
[CrossRef]

Gustafsson, M. G. L.

M. G. L. Gustafsson, J. Microsc. 198, 82 (2000).
[CrossRef]

Hao, X.

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, Appl. Phys. Lett. 102, 013104 (2013).
[CrossRef]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, Appl. Phys. Lett. 99, 203102 (2011).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Heintzmann, R.

L. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, Eur. Biophys. J. 38, 807 (2009).
[CrossRef]

Hell, S. W.

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[CrossRef]

Hirvonen, L.

L. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, Eur. Biophys. J. 38, 807 (2009).
[CrossRef]

Hong, M.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Iyer, G.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, Proc. Natl. Acad. Sci. USA 106, 22287 (2009).
[CrossRef]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Ku, Y.

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, Appl. Phys. Lett. 102, 013104 (2013).
[CrossRef]

Kuang, C.

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, Appl. Phys. Lett. 102, 013104 (2013).
[CrossRef]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, Appl. Phys. Lett. 99, 203102 (2011).
[CrossRef]

Lauterbach, M.

M. Lauterbach, Opt. Nanosc. 1, 8 (2012).
[CrossRef]

Li, H.

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, Appl. Phys. Lett. 102, 013104 (2013).
[CrossRef]

Li, L.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Li, Y.

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, Appl. Phys. Lett. 102, 013104 (2013).
[CrossRef]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, Appl. Phys. Lett. 99, 203102 (2011).
[CrossRef]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[CrossRef]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[CrossRef]

Liu, X.

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, Appl. Phys. Lett. 102, 013104 (2013).
[CrossRef]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, Appl. Phys. Lett. 99, 203102 (2011).
[CrossRef]

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Liu, Z. W.

X. Zhang and Z. W. Liu, Nat. Mater. 7, 435 (2008).
[CrossRef]

Luk’yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Mandula, O.

L. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, Eur. Biophys. J. 38, 807 (2009).
[CrossRef]

Nicholls, G.

E. A. Ash and G. Nicholls, Nature 237, 510 (1972).
[CrossRef]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[CrossRef]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[CrossRef]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, C. C. Davis, and A. V. Zayats, New J. Phys. 7, 175 (2005).
[CrossRef]

I. I. Smolyaninov, C. C. Davis, J. Elliott, and A. V. Zayats, Opt. Lett. 30, 382 (2005).
[CrossRef]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[CrossRef]

Tong, L.

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, Appl. Phys. Lett. 102, 013104 (2013).
[CrossRef]

Wang, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Weiss, S.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, Proc. Natl. Acad. Sci. USA 106, 22287 (2009).
[CrossRef]

Wichmann, J.

Wicker, K.

L. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, Eur. Biophys. J. 38, 807 (2009).
[CrossRef]

Zayats, A. V.

I. I. Smolyaninov, C. C. Davis, J. Elliott, and A. V. Zayats, Opt. Lett. 30, 382 (2005).
[CrossRef]

I. I. Smolyaninov, C. C. Davis, and A. V. Zayats, New J. Phys. 7, 175 (2005).
[CrossRef]

Zhang, H.

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, Appl. Phys. Lett. 102, 013104 (2013).
[CrossRef]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, Appl. Phys. Lett. 99, 203102 (2011).
[CrossRef]

Zhang, X.

X. Zhang and Z. W. Liu, Nat. Mater. 7, 435 (2008).
[CrossRef]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).
[CrossRef]

Appl. Phys. Lett.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, Appl. Phys. Lett. 99, 203102 (2011).
[CrossRef]

X. Hao, X. Liu, C. Kuang, Y. Li, Y. Ku, H. Zhang, H. Li, and L. Tong, Appl. Phys. Lett. 102, 013104 (2013).
[CrossRef]

Arch. Mikrosk. Anat.

E. Abbe, Arch. Mikrosk. Anat. 9, 413 (1873).
[CrossRef]

Eur. Biophys. J.

L. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, Eur. Biophys. J. 38, 807 (2009).
[CrossRef]

J. Microsc.

M. G. L. Gustafsson, J. Microsc. 198, 82 (2000).
[CrossRef]

Nat. Commun.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, Nat. Commun. 2, 218 (2011).
[CrossRef]

Nat. Mater.

X. Zhang and Z. W. Liu, Nat. Mater. 7, 435 (2008).
[CrossRef]

Nat. Methods

M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006).
[CrossRef]

Nature

E. A. Ash and G. Nicholls, Nature 237, 510 (1972).
[CrossRef]

New J. Phys.

I. I. Smolyaninov, C. C. Davis, and A. V. Zayats, New J. Phys. 7, 175 (2005).
[CrossRef]

Nuovo Cimento

G. Di Francia, Nuovo Cimento 9, 426 (1952).

Opt. Lett.

Opt. Nanosc.

M. Lauterbach, Opt. Nanosc. 1, 8 (2012).
[CrossRef]

Proc. Natl. Acad. Sci. USA

M. G. Gustafsson, Proc. Natl. Acad. Sci. USA 102, 13081 (2005).
[CrossRef]

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, Proc. Natl. Acad. Sci. USA 106, 22287 (2009).
[CrossRef]

Science

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Science 313, 1642 (2006).
[CrossRef]

Other

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of our method.

Fig. 2.
Fig. 2.

(a) Principle of frequency shift. (b) Original low passband in a general microscope versus the offset passband (gray area) of our method in Fourier space.

Fig. 3.
Fig. 3.

Sample gratings imaged by (a) FIB, (b) general white-light optical microscope, and our method with (c) red and (d) blue illumination light, respectively. The real sizes of gaps between lines in the gratings are (left-hand column) 130 nm and (right-hand column) 90 nm, respectively. The length of bars in the images corresponds to 500 nm.

Fig. 4.
Fig. 4.

Contrast of image observed by CCD versus the depth of the sample. (a) FIB image of the sample (140–140 nm gratings), (b) graph of the contrast of image observed by CCD versus the depth of the sample, (c)–(h) images directly observed by CCD when the depths of the sample are (c) 20, (d) 60, (e) 100, (f) 140, (g) 180, and (h) 220 nm. The length of bars in the images corresponds to 500 nm.

Fig. 5.
Fig. 5.

Image reconstruction procedure of our method. As a comparison, the images of the sample are taken by (a) FIB, (b) a general white-light optical microscope, and (c) our method with a fixed illumination direction. (d) If one single frame is considered, the image can be only partially reconstructed. On the other hand, better result can be expected if more (three) frames of images are calculated. The images in the left-hand column are all generated from the experiment, while the right-hand column illustrates the simulation results.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

KΛ=KΛ+Ke.
Rπ/(2πnsinθ/λ0+|Kmax|).
contrast=Ip/(Ib+α),α1,

Metrics