Abstract

A distributed fiber strain and vibration sensor which effectively combines Brillouin optical time-domain reflectometry and polarization optical time-domain reflectometry is proposed. Two reference beams with orthogonal polarization states are, respectively, used to perform the measurement. By using the signal obtained from either reference beam, the vibration of fiber can be measured from the polarization effect. After combining the signals obtained by both reference beams, the strain can be measured from the Brillouin effect. In the experiment, 10 m spatial resolution, 0.6 kHz frequency measurement range, 2.5 Hz frequency resolution, and 0.2 MHz uncertainty of Brillouin frequency measurement are realized for a 4 km sensing distance.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, K. Shimizu, and T. Kurashima, J. Lightwave Technol. 13, 1296 (1995).
    [CrossRef]
  2. A. D. McAulay and J. Wang, Proc. SPIE 5435, 114 (2004).
    [CrossRef]
  3. Z. Zhang and X. Bao, Opt. Express 16, 10240 (2008).
    [CrossRef]
  4. J. C. Juarez and H. F. Taylor, Appl. Opt. 46, 1968 (2007).
    [CrossRef]
  5. R. Bernini, A. Minardo, and L. Zeni, Opt. Lett. 34, 2613 (2009).
    [CrossRef]
  6. Y. Peled, A. Motil, I. Kressel, and M. Tur, Opt. Express 21, 10697 (2013).
    [CrossRef]
  7. F. Wang, C. Li, X. Zhao, and X. Zhang, Appl. Opt. 51, 176 (2012).
    [CrossRef]
  8. X. Bao and L. Chen, Sensors 12, 8601 (2012).
    [CrossRef]

2013

2012

2009

2008

2007

2004

A. D. McAulay and J. Wang, Proc. SPIE 5435, 114 (2004).
[CrossRef]

1995

T. Horiguchi, K. Shimizu, and T. Kurashima, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Bao, X.

Bernini, R.

Chen, L.

X. Bao and L. Chen, Sensors 12, 8601 (2012).
[CrossRef]

Horiguchi, T.

T. Horiguchi, K. Shimizu, and T. Kurashima, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Juarez, J. C.

Kressel, I.

Kurashima, T.

T. Horiguchi, K. Shimizu, and T. Kurashima, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Li, C.

McAulay, A. D.

A. D. McAulay and J. Wang, Proc. SPIE 5435, 114 (2004).
[CrossRef]

Minardo, A.

Motil, A.

Peled, Y.

Shimizu, K.

T. Horiguchi, K. Shimizu, and T. Kurashima, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Taylor, H. F.

Tur, M.

Wang, F.

Wang, J.

A. D. McAulay and J. Wang, Proc. SPIE 5435, 114 (2004).
[CrossRef]

Zeni, L.

Zhang, X.

Zhang, Z.

Zhao, X.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scheme of the DFSVS. The dashed line is the sync signal.

Fig. 2.
Fig. 2.

(a) Frequency spectrum of the signal change along the fiber, which is obtained when the 10,885 MHz frequency component of the Brillouin spectrum is swept. (b) Spectrum at 3.1 km. (c) Amplitude of the 11 Hz signal along the fiber.

Fig. 3.
Fig. 3.

Power distribution of the Brillouin signal for the 10,885 MHz frequency component. (a) Result of C1. (b) Result obtained by summing up C1 and C2.

Fig. 4.
Fig. 4.

(a) Brillouin spectrum distribution along the fiber. (b) BFS along the fiber.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E1=E0exp(i2πν0t)(p0(1p02)1/2exp(iδϕ0))
E2=E0exp(i2πν0t)((1p02)1/2p0exp[i(δϕ0+π)]),
EB(x)=EBexp(i2πνBt)(pB(x)(1pB2(x))1/2exp(iδϕB(x))),
P1(x)(ηehνs)2·4E02EB2[1+2p02pB2(x)p02pB2(x)+2p0pB(x)(1p02)1/2(1pB2(x))1/2cos(δϕ0δϕB(x))],
P2(x)(ηehνs)2·4E02EB2[p02+pB2(x)2p02pB2(x)2p0pB(x)(1p02)1/2(1pB2(x))1/2cos(δϕ0δϕB(x))],
P(x)=P1(x)+P2(x)(ηehνs)2·4E02EB2.

Metrics