Abstract

Whispering gallery modes in birefringent crystalline resonators are investigated. We experimentally investigate the XY-cut resonators made with LiNbO3, LiTaO3, and BBO and observe strong influence of the resonator’s shape and birefringence on the quality factor of the extraordinary polarized modes. We show that extraordinary modes can have lower Q and even be suppressed owing to polarization conversion loss. The ordinary ray modes retain the high Q due to inhibited reflection phenomenon.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
    [CrossRef]
  2. R. Boyd, Nonlinear Optics (Academic, 1992).
  3. V. S. Ilchenko, A. A. Savchenkov, J. Byrd, I. Solomatine, A. B. Matsko, D. Seidel, and L. Maleki, Opt. Lett. 33, 1569 (2008).
    [CrossRef]
  4. G. Lin, J. Fuerst, D. V. Strekalov, I. S. Grudinin, and N. Yu, Opt. Express 20, 21372 (2012).
  5. M. L. Gorodetsky and A. E. Fomin, IEEE J. Sel. Top. Quantum Electron. 12, 33 (2006).
    [CrossRef]
  6. A. Mekis, J. U. Noeckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995).
    [CrossRef]
  7. S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, J. Lightwave Technol. 15, 2154 (1997).
    [CrossRef]
  8. I. S. Grudinin and N. Yu, J. Opt. Soc. Am. B 29, 3010 (2012).
    [CrossRef]
  9. M. Sluijter, D. K. G. de Boer, and J. M. Braat, J. Opt. Soc. Am. A 25, 1260 (2008).
    [CrossRef]
  10. M. S. Simon and R. M. Echarri, Opt. Lett. 14, 257 (1989).
    [CrossRef]
  11. J. B. Keller and S. I. Rubinow, Ann. Phys. 9, 24 (1960).
    [CrossRef]

2012 (2)

2008 (2)

2006 (2)

M. L. Gorodetsky and A. E. Fomin, IEEE J. Sel. Top. Quantum Electron. 12, 33 (2006).
[CrossRef]

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
[CrossRef]

1997 (1)

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, J. Lightwave Technol. 15, 2154 (1997).
[CrossRef]

1995 (1)

A. Mekis, J. U. Noeckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995).
[CrossRef]

1989 (1)

1960 (1)

J. B. Keller and S. I. Rubinow, Ann. Phys. 9, 24 (1960).
[CrossRef]

Boyd, R.

R. Boyd, Nonlinear Optics (Academic, 1992).

Braat, J. M.

Byrd, J.

Chang, R. K.

A. Mekis, J. U. Noeckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995).
[CrossRef]

Chen, G.

A. Mekis, J. U. Noeckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995).
[CrossRef]

de Boer, D. K. G.

Echarri, R. M.

Fomin, A. E.

M. L. Gorodetsky and A. E. Fomin, IEEE J. Sel. Top. Quantum Electron. 12, 33 (2006).
[CrossRef]

Fuerst, J.

Gorodetsky, M. L.

M. L. Gorodetsky and A. E. Fomin, IEEE J. Sel. Top. Quantum Electron. 12, 33 (2006).
[CrossRef]

Grudinin, I. S.

Hagness, S. C.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, J. Lightwave Technol. 15, 2154 (1997).
[CrossRef]

Ho, S. T.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, J. Lightwave Technol. 15, 2154 (1997).
[CrossRef]

Ilchenko, V. S.

Keller, J. B.

J. B. Keller and S. I. Rubinow, Ann. Phys. 9, 24 (1960).
[CrossRef]

Lin, G.

Maleki, L.

Matsko, A. B.

Mekis, A.

A. Mekis, J. U. Noeckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995).
[CrossRef]

Noeckel, J. U.

A. Mekis, J. U. Noeckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995).
[CrossRef]

Rafizadeh, D.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, J. Lightwave Technol. 15, 2154 (1997).
[CrossRef]

Rubinow, S. I.

J. B. Keller and S. I. Rubinow, Ann. Phys. 9, 24 (1960).
[CrossRef]

Savchenkov, A. A.

Seidel, D.

Simon, M. S.

Sluijter, M.

Solomatine, I.

Stone, A. D.

A. Mekis, J. U. Noeckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995).
[CrossRef]

Strekalov, D. V.

Taflove, A.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, J. Lightwave Technol. 15, 2154 (1997).
[CrossRef]

Yu, N.

Ann. Phys. (1)

J. B. Keller and S. I. Rubinow, Ann. Phys. 9, 24 (1960).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. B. Matsko and V. S. Ilchenko, IEEE J. Sel. Top. Quantum Electron. 12, 3 (2006).
[CrossRef]

M. L. Gorodetsky and A. E. Fomin, IEEE J. Sel. Top. Quantum Electron. 12, 33 (2006).
[CrossRef]

J. Lightwave Technol. (1)

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, J. Lightwave Technol. 15, 2154 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

A. Mekis, J. U. Noeckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995).
[CrossRef]

Other (1)

R. Boyd, Nonlinear Optics (Academic, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematics of an X-cut resonator and reflection angles.

Fig. 2.
Fig. 2.

Reflection and transmission coefficients for α=0°, γ=20° (chosen to exaggerate the nonisotropic behavior) as a function of incidence angle β in LN (ne=2.12, no=2.21).

Fig. 3.
Fig. 3.

log(Reo) for a 4 mm LN resonator near a 1550 nm wavelength (l=17000, β=85.707°). Reo grows with γ and peaks when α approaches π/2+Nπ, N=0,1,2. The higher values on the vertical axis correspond to smaller value of Reo.

Fig. 4.
Fig. 4.

Schematic of the experimental setup. A 4 mm diameter WGM resonator and a prism coupler are shown in the photo inset.

Fig. 5.
Fig. 5.

FEM modeling of the TE modes of the dielectric resonators. (a) First-order mode in the LN resonator, 170° edge angle. (b), (c) First- and third-order modes in the LN resonator, 110° edge angle. (d) Profile of a LT resonator. Each window is 100×100μm. Yellow area boundary corresponds to half of the field maximum, orange to the 1/e level.

Fig. 6.
Fig. 6.

Portion of the spectrum of the 4 mm multimode LN resonator for TE and TM polarizations. The TM signal is multiplied tenfold because of the smaller reflection coefficient of the glass slide. Both modes are shown in the critically coupled regime.

Metrics