Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Electron relaxation effect on the sub-100-fs laser interaction with gold thin film

Not Accessible

Your library or personal account may give you access

Abstract

The heating of a gold thin film by a single 10 fs laser pulse is modeled by a combined continuum–atomistic method considering the electron relaxation effect. Numerical results show that the temperature evolution and stress propagation proceed in the same manners as those for the subpicosecond laser irradiation. It is also found that the electron relaxation effect is insignificant and could be considerably overestimated by neglecting the ballistic energy transfer in the film.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Effect of the hot electron blast force on ultrafast laser ablation of nickel thin film

Yonggang Shen, Yong Gan, Wanjun Qi, Yaogen Shen, and Zhen Chen
Appl. Opt. 54(7) 1737-1742 (2015)

Nonequilibrium phase change in gold films induced by ultrafast laser heating

Yong Gan and J. K. Chen
Opt. Lett. 37(13) 2691-2693 (2012)

Atomic-level study of a thickness-dependent phase change in gold thin films heated by an ultrafast laser

Yong Gan, Jixiang Shi, and Shan Jiang
Appl. Opt. 51(24) 5946-5951 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved