Abstract

A method to improve the linearity of the analog photonic link is proposed and experimentally demonstrated, which consists of a phase modulator and an optical tunable bandpass filter. By carefully optimizing the bandwidth and center wavelength of the filter, we can significantly suppress the third-order intermodulation distortion by 32dB. Subsequently the spurious-free dynamic range of the link is improved by 14dB.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds, IEEE Trans. Microwave Theor. Tech. 50, 877 (2002).
    [CrossRef]
  2. J. P. Yao, J. Lightwave Technol. 27, 314 (2009).
    [CrossRef]
  3. D. Marpaung, High Dynamic Range Analog Photonic Links: Design and Implementation (University of Twente, 2009).
  4. S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
    [CrossRef]
  5. A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
    [CrossRef]
  6. M. H. Huang, J. B. Fu, and S. L. Pan, Opt. Lett. 37, 1823 (2012).
    [CrossRef]
  7. Z. Y. Chen, L. S. Yan, Y. H. Guo, W. Pan, B. Luo, X. H. Zou, and T. Zhou, in Proceedings of Conference on Laser and Electo-Optics (Optical Society of America, 2013), CM3G.7.
  8. T. R. Clark and M. L. Dennis, IEEE Photon. Technol. Lett. 19, 1206 (2007).
    [CrossRef]
  9. B. M. Haas, V. J. Urick, J. D. McKinney, and T. E. Murphy, J. Lightwave Technol. 26, 2748 (2008).
    [CrossRef]
  10. V. R. Pagan, B. M. Haas, and T. E. Murphy, in Proceedings of IEEE Topical Meeting on Microwave Photonics (IEEE, 2010), p. 189.
  11. H. Chi, X. H. Zou, and J. P. Yao, J. Lightwave Technol. 27, 511 (2009).
    [CrossRef]
  12. B. M. Haas and T. E. Murphy, IEEE Photon. Technol. Lett. 19, 729 (2007).
    [CrossRef]

2012 (1)

2011 (1)

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
[CrossRef]

2010 (1)

S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
[CrossRef]

2009 (2)

2008 (1)

2007 (2)

T. R. Clark and M. L. Dennis, IEEE Photon. Technol. Lett. 19, 1206 (2007).
[CrossRef]

B. M. Haas and T. E. Murphy, IEEE Photon. Technol. Lett. 19, 729 (2007).
[CrossRef]

2002 (1)

A. J. Seeds, IEEE Trans. Microwave Theor. Tech. 50, 877 (2002).
[CrossRef]

Agarwal, A.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
[CrossRef]

Banwell, T.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
[CrossRef]

Chen, Z. Y.

Z. Y. Chen, L. S. Yan, Y. H. Guo, W. Pan, B. Luo, X. H. Zou, and T. Zhou, in Proceedings of Conference on Laser and Electo-Optics (Optical Society of America, 2013), CM3G.7.

Chi, H.

Clark, T. R.

T. R. Clark and M. L. Dennis, IEEE Photon. Technol. Lett. 19, 1206 (2007).
[CrossRef]

Dennis, M. L.

T. R. Clark and M. L. Dennis, IEEE Photon. Technol. Lett. 19, 1206 (2007).
[CrossRef]

Fu, J. B.

Guo, Y. H.

Z. Y. Chen, L. S. Yan, Y. H. Guo, W. Pan, B. Luo, X. H. Zou, and T. Zhou, in Proceedings of Conference on Laser and Electo-Optics (Optical Society of America, 2013), CM3G.7.

Haas, B. M.

B. M. Haas, V. J. Urick, J. D. McKinney, and T. E. Murphy, J. Lightwave Technol. 26, 2748 (2008).
[CrossRef]

B. M. Haas and T. E. Murphy, IEEE Photon. Technol. Lett. 19, 729 (2007).
[CrossRef]

V. R. Pagan, B. M. Haas, and T. E. Murphy, in Proceedings of IEEE Topical Meeting on Microwave Photonics (IEEE, 2010), p. 189.

Huang, M. H.

Li, S. Y.

S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
[CrossRef]

Luo, B.

Z. Y. Chen, L. S. Yan, Y. H. Guo, W. Pan, B. Luo, X. H. Zou, and T. Zhou, in Proceedings of Conference on Laser and Electo-Optics (Optical Society of America, 2013), CM3G.7.

Marpaung, D.

D. Marpaung, High Dynamic Range Analog Photonic Links: Design and Implementation (University of Twente, 2009).

McKinney, J. D.

Murphy, T. E.

B. M. Haas, V. J. Urick, J. D. McKinney, and T. E. Murphy, J. Lightwave Technol. 26, 2748 (2008).
[CrossRef]

B. M. Haas and T. E. Murphy, IEEE Photon. Technol. Lett. 19, 729 (2007).
[CrossRef]

V. R. Pagan, B. M. Haas, and T. E. Murphy, in Proceedings of IEEE Topical Meeting on Microwave Photonics (IEEE, 2010), p. 189.

Pagan, V. R.

V. R. Pagan, B. M. Haas, and T. E. Murphy, in Proceedings of IEEE Topical Meeting on Microwave Photonics (IEEE, 2010), p. 189.

Pan, S. L.

Pan, W.

Z. Y. Chen, L. S. Yan, Y. H. Guo, W. Pan, B. Luo, X. H. Zou, and T. Zhou, in Proceedings of Conference on Laser and Electo-Optics (Optical Society of America, 2013), CM3G.7.

Seeds, A. J.

A. J. Seeds, IEEE Trans. Microwave Theor. Tech. 50, 877 (2002).
[CrossRef]

Toliver, P.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
[CrossRef]

Urick, V. J.

Woodward, T. K.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
[CrossRef]

Yan, L. S.

Z. Y. Chen, L. S. Yan, Y. H. Guo, W. Pan, B. Luo, X. H. Zou, and T. Zhou, in Proceedings of Conference on Laser and Electo-Optics (Optical Society of America, 2013), CM3G.7.

Yao, J. P.

Zhang, H. Y.

S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
[CrossRef]

Zheng, X. P.

S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
[CrossRef]

Zhou, B. K.

S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
[CrossRef]

Zhou, T.

Z. Y. Chen, L. S. Yan, Y. H. Guo, W. Pan, B. Luo, X. H. Zou, and T. Zhou, in Proceedings of Conference on Laser and Electo-Optics (Optical Society of America, 2013), CM3G.7.

Zou, X. H.

H. Chi, X. H. Zou, and J. P. Yao, J. Lightwave Technol. 27, 511 (2009).
[CrossRef]

Z. Y. Chen, L. S. Yan, Y. H. Guo, W. Pan, B. Luo, X. H. Zou, and T. Zhou, in Proceedings of Conference on Laser and Electo-Optics (Optical Society of America, 2013), CM3G.7.

IEEE Photon. Technol. Lett. (4)

S. Y. Li, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, IEEE Photon. Technol. Lett. 22, 1775 (2010).
[CrossRef]

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
[CrossRef]

T. R. Clark and M. L. Dennis, IEEE Photon. Technol. Lett. 19, 1206 (2007).
[CrossRef]

B. M. Haas and T. E. Murphy, IEEE Photon. Technol. Lett. 19, 729 (2007).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

A. J. Seeds, IEEE Trans. Microwave Theor. Tech. 50, 877 (2002).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Lett. (1)

Other (3)

Z. Y. Chen, L. S. Yan, Y. H. Guo, W. Pan, B. Luo, X. H. Zou, and T. Zhou, in Proceedings of Conference on Laser and Electo-Optics (Optical Society of America, 2013), CM3G.7.

V. R. Pagan, B. M. Haas, and T. E. Murphy, in Proceedings of IEEE Topical Meeting on Microwave Photonics (IEEE, 2010), p. 189.

D. Marpaung, High Dynamic Range Analog Photonic Links: Design and Implementation (University of Twente, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Proposed linearized phase-modulated analog photonic link: LD, laser diode; PM, phase modulation; TBF, tunable bandpass filter; PD, photodetector.

Fig. 2.
Fig. 2.

Optical spectrum of the filtered output and electrical spectrum detected by the PD for (a) a0=1, a1=a2=1 and (b) a0=1/3, a1=a2=1.

Fig. 3.
Fig. 3.

Electrical spectrum of the two-tone transmission for (a) SSB-PM link and (b) proposed linearized link.

Fig. 4.
Fig. 4.

Measured SFDR for the SSB-PM link and the linearized link.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Vin=V1cos(ω1t)+V2cos(ω2t),
Eout=P0eiω0tei(m1cosω1t+m2cosω2t),
mp=πVpVπ(p=1,2),
Eout=P0eiω0tn=l=Jn(m1)Jl(m2)ei(nω1t+n2π+lω2t+l2π).
Eout=P0eiω0t{a0J01J02+a2J11J12ei(ω1t+ω2t+π)a0(J11J12ei(ω1tω2t)+J11J12ei(ω2tω1t))+a1(J11J02ei(ω1t+π2)+J01J12ei(ω2t+π2))a1(J21J12ei(2ω1t+π2ω2t)+J11J22ei(2ω2t+π2ω1t))+a2(J21J02ei(2ω1t+π)+J01J22ei(2ω2t+π))},
II0+I1(sinω1t+sinω2t)+I3[sin(2ω1ω2)t+sin(2ω2ω1)t],
I1=2I0a0a1J01J022J11,
I3=2I0a1J02J12(a2J01J21a0J112a0J01J21).
G=(zout2I12)/Pin,
I32I0a0J02J12×m128(a23a0).
a2=3a0.
10loga22a02=9.54.

Metrics