Abstract

We consider a hybrid quantum-well structure consisting of regions whose properties alternate between active Raman gain and electromagnetically induced transparency. We present both analytical and numerical results that indicate a large light beam defection using spatially inhomogeneous pump and control lasers. We show well-isolated on-chip wavelength selection or channeling capabilities without light field attenuation or distortion, demonstrating the advantages of the system for possible important applications in integrated circuits for optical telecommunications.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electromagnetically induced transparency from electron spin coherences in semiconductor quantum wells [Invited]

Hailin Wang and Shannon O’Leary
J. Opt. Soc. Am. B 29(2) A6-A16 (2012)

Proposal for a compact design for real-time optical bistability switching via a semiconductor cavity containing quantum wells

Mostafa Sahrai, Solmaz Ebadollahi-Bakhtevar, and Hamed Sattari
Appl. Opt. 55(28) 8107-8115 (2016)

Observation of angle-modulated switch between enhancement and suppression of nonlinear optical processes

Zhiguo Wang, Zhengyang Zhao, Peiying Li, Jiamin Yuan, Huayan Lan, Huaibin Zheng, Yiqi Zhang, and Yanpeng Zhang
Opt. Express 21(5) 5654-5670 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription