Abstract

We report a tunable iris using two immiscible liquids. One liquid is opaque and conductive, while the other liquid is clear and insulating. The opaque liquid forms an iris-like opening in its central area on one glass substrate surface. The clear liquid is used to fill the outside space of the opaque liquid. In the voltage-off state, the opening presents the smallest aperture. When a voltage is applied to the liquids, the diameter of the iris is enlarged due to the electrowetting effect. Our results show that the aperture of the iris can be tuned from 2.3 to 6.1mm as the applied voltage is changed from 0 to 65V. The response time and the transmittance in the opening area were measured to be 200ms and 85%, respectively. Our adaptive iris has potential applications in beam controls, light shutters, and lab-on-a-chip devices.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Harrison and J. Schnitzer, “Diaphragm for photographic cameras,” U.S. patent000,021,470 (September7, 1858).
  2. R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004).
    [CrossRef]
  3. S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
    [CrossRef]
  4. B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
    [CrossRef]
  5. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, Opt. Express 14, 6557 (2006).
    [CrossRef]
  6. J. K. Park, S. J. Lee, and K. H. Kang, Biomicrofluidics 4, 024102 (2010).
    [CrossRef]
  7. Y. H. Lin, J. K. Li, T. Y. Chu, and H. K. Hsu, Opt. Express 18, 10104 (2010).
    [CrossRef]
  8. H. Yu, G. Zhou, C. F. Siong, and L. Feiwen, Opt. Lett. 33, 548 (2008).
    [CrossRef]
  9. H. Ren and S. T. Wu, Opt. Lett. 35, 3826 (2010).
    [CrossRef]
  10. C. G. Tsai and J. A. Yeh, Opt. Lett. 35, 2484 (2010).
    [CrossRef]
  11. C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, Opt. Express 19, 15525 (2011).
    [CrossRef]
  12. L. Li, C. Liu, and Q. H. Wang, Opt. Lett. 37, 3306 (2012).
    [CrossRef]
  13. L. Li, C. Liu, and Q. H. Wang, IEEE Photon. Technol. Lett. 25, 989 (2013).
    [CrossRef]

2013 (1)

L. Li, C. Liu, and Q. H. Wang, IEEE Photon. Technol. Lett. 25, 989 (2013).
[CrossRef]

2012 (1)

2011 (1)

2010 (4)

2008 (1)

2006 (1)

2004 (2)

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

2000 (1)

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Abeysinghe, D. C.

Berge, B.

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Chu, T. Y.

Feiwen, L.

Harrison, C. C.

C. C. Harrison and J. Schnitzer, “Diaphragm for photographic cameras,” U.S. patent000,021,470 (September7, 1858).

Haus, J. W.

Heikenfeld, J.

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

Hsu, H. K.

Kang, K. H.

J. K. Park, S. J. Lee, and K. H. Kang, Biomicrofluidics 4, 024102 (2010).
[CrossRef]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

Lee, S. J.

J. K. Park, S. J. Lee, and K. H. Kang, Biomicrofluidics 4, 024102 (2010).
[CrossRef]

Li, J. K.

Li, L.

L. Li, C. Liu, and Q. H. Wang, IEEE Photon. Technol. Lett. 25, 989 (2013).
[CrossRef]

L. Li, C. Liu, and Q. H. Wang, Opt. Lett. 37, 3306 (2012).
[CrossRef]

Lin, Y. H.

Liu, C.

L. Li, C. Liu, and Q. H. Wang, IEEE Photon. Technol. Lett. 25, 989 (2013).
[CrossRef]

L. Li, C. Liu, and Q. H. Wang, Opt. Lett. 37, 3306 (2012).
[CrossRef]

Mugele, F.

Murade, C. U.

Oh, J. M.

Park, J. K.

J. K. Park, S. J. Lee, and K. H. Kang, Biomicrofluidics 4, 024102 (2010).
[CrossRef]

Peseux, J.

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Ren, H.

Schnitzer, J.

C. C. Harrison and J. Schnitzer, “Diaphragm for photographic cameras,” U.S. patent000,021,470 (September7, 1858).

Siong, C. F.

Smith, N. R.

Stagg, J.

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004).
[CrossRef]

Syms, R. R. A.

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004).
[CrossRef]

Tsai, C. G.

van den Ende, D.

Veladi, H.

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004).
[CrossRef]

Wang, Q. H.

L. Li, C. Liu, and Q. H. Wang, IEEE Photon. Technol. Lett. 25, 989 (2013).
[CrossRef]

L. Li, C. Liu, and Q. H. Wang, Opt. Lett. 37, 3306 (2012).
[CrossRef]

Wu, S. T.

Yeh, J. A.

Yu, H.

Zhou, G.

Zou, H.

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

Biomicrofluidics (1)

J. K. Park, S. J. Lee, and K. H. Kang, Biomicrofluidics 4, 024102 (2010).
[CrossRef]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Li, C. Liu, and Q. H. Wang, IEEE Photon. Technol. Lett. 25, 989 (2013).
[CrossRef]

J. Micromech. Microeng. (1)

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Other (1)

C. C. Harrison and J. Schnitzer, “Diaphragm for photographic cameras,” U.S. patent000,021,470 (September7, 1858).

Supplementary Material (1)

» Media 1: MOV (3443 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic cross-sectional structure of a liquid iris. (a) In the voltage-off state and (b) in the voltage-on state.

Fig. 2.
Fig. 2.

Recorded aperture change of our liquid iris with different voltages. (a) 0 V. (b) 45 V. (c) 55 V. (d) 65 V. A movie showing the dynamic change of the aperture is given in (a) (Media 1).

Fig. 3.
Fig. 3.

Diameter of the aperture versus the applied voltage.

Fig. 4.
Fig. 4.

Time-dependent transmitted light intensity impacted with U=55V voltage pulse.

Tables (1)

Tables Icon

Table 1. Measured Response Time and Current of the Liquid Iris

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

cosθ=γ1γ2γ12+ε2γ12dU2,
Ra=DmaxDminDmax×100%,

Metrics