Abstract

We have studied the effect of a twist defect on the conversion of the fundamental mode (FM) into an optical vortex (OV) in a helical-core fiber (HCF). We have shown that if such a twist defect is situated in the middle of the HCF, which converts the FM into an OV, such a fiber system can continuously change the orbital angular momentum (OAM) of the output field from 0 to 1 (in a.u.). This control of the OAM is achieved by variation of the twist angle. In this action upon the OAM, this system has analogy with the quarter-wave plate, which is able to change the spin angular momentum. We also introduced the generalized Stokes parameters (SPs) and Poincaré sphere to visualize evolution of the superposition of states with zero and nonzero OAM. Connection of SPs with geometric characteristics of the location of singularity is made.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Rashleigh, J. Lightwave Technol. 1, 312 (1983).
    [CrossRef]
  2. R. Ulrich and A. Simon, Appl. Opt. 18, 2241 (1979).
    [CrossRef]
  3. V. I. Kopp and A. Z. Genack, Nat. Photonics 5, 470 (2011).
    [CrossRef]
  4. V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, Science 305, 74 (2004).
    [CrossRef]
  5. G. Shvets, S. Trendafiliv, V. I. Kopp, D. Neugroschl, and A. Z. Genack, Pure Appl. Opt. 11, 074007 (2009).
    [CrossRef]
  6. V. I. Kopp and A. Z. Genack, Opt. Lett. 28, 1876 (2003).
    [CrossRef]
  7. V. I. Kopp, V. M. Churikov, G. Zhang, J. Singer, C. W. Draper, N. Chao, D. Neugroschl, and A. Z. Genack, J. Opt. Soc. Am. B 24, A48 (2007).
    [CrossRef]
  8. C. D. Poole, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991).
    [CrossRef]
  9. K. S. Lee and T. Erdogan, J. Opt. Soc. Am. A 18, 1176 (2001).
    [CrossRef]
  10. C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, Phys. Rev. A 78, 013813 (2008).
    [CrossRef]
  11. C. N. Alexeyev and M. A. Yavorsky, Phys. Rev. A 78, 043828 (2008).
    [CrossRef]
  12. C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, Phys. Rev. A 83, 063820 (2011).
    [CrossRef]
  13. C. N. Alexeyev, Appl. Opt. 52, 433 (2013).
    [CrossRef]
  14. H. I. Sztul, D. A. Nolan, G. Milione, X. Chen, J. Koh, and R. R. Alfano, Proc. SPIE 7227, 722704 (2009).
    [CrossRef]
  15. G. Milione, H. I. Sztul, and R. R. Alfano, Proc. SPIE 7613, 761305 (2010).
    [CrossRef]
  16. G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, Phys. Rev. Lett. 107, 053601 (2011).
    [CrossRef]
  17. M. J. Padgett and J. Courtial, Opt. Lett. 24, 430 (1999).
    [CrossRef]
  18. M. V. Berry, Proc. SPIE 3487, 6 (1998).
    [CrossRef]

2013

2011

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, Phys. Rev. Lett. 107, 053601 (2011).
[CrossRef]

C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, Phys. Rev. A 83, 063820 (2011).
[CrossRef]

V. I. Kopp and A. Z. Genack, Nat. Photonics 5, 470 (2011).
[CrossRef]

2010

G. Milione, H. I. Sztul, and R. R. Alfano, Proc. SPIE 7613, 761305 (2010).
[CrossRef]

2009

G. Shvets, S. Trendafiliv, V. I. Kopp, D. Neugroschl, and A. Z. Genack, Pure Appl. Opt. 11, 074007 (2009).
[CrossRef]

H. I. Sztul, D. A. Nolan, G. Milione, X. Chen, J. Koh, and R. R. Alfano, Proc. SPIE 7227, 722704 (2009).
[CrossRef]

2008

C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, Phys. Rev. A 78, 013813 (2008).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, Phys. Rev. A 78, 043828 (2008).
[CrossRef]

2007

2004

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, Science 305, 74 (2004).
[CrossRef]

2003

2001

1999

1998

M. V. Berry, Proc. SPIE 3487, 6 (1998).
[CrossRef]

1991

C. D. Poole, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991).
[CrossRef]

1983

S. C. Rashleigh, J. Lightwave Technol. 1, 312 (1983).
[CrossRef]

1979

Alexeyev, C. N.

C. N. Alexeyev, Appl. Opt. 52, 433 (2013).
[CrossRef]

C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, Phys. Rev. A 83, 063820 (2011).
[CrossRef]

C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, Phys. Rev. A 78, 013813 (2008).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, Phys. Rev. A 78, 043828 (2008).
[CrossRef]

Alfano, R. R.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, Phys. Rev. Lett. 107, 053601 (2011).
[CrossRef]

G. Milione, H. I. Sztul, and R. R. Alfano, Proc. SPIE 7613, 761305 (2010).
[CrossRef]

H. I. Sztul, D. A. Nolan, G. Milione, X. Chen, J. Koh, and R. R. Alfano, Proc. SPIE 7227, 722704 (2009).
[CrossRef]

Berry, M. V.

M. V. Berry, Proc. SPIE 3487, 6 (1998).
[CrossRef]

Chao, N.

Chen, X.

H. I. Sztul, D. A. Nolan, G. Milione, X. Chen, J. Koh, and R. R. Alfano, Proc. SPIE 7227, 722704 (2009).
[CrossRef]

Churikov, V. M.

Courtial, J.

Draper, C. W.

Erdogan, T.

Fadeyeva, T. A.

C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, Phys. Rev. A 83, 063820 (2011).
[CrossRef]

Genack, A. Z.

V. I. Kopp and A. Z. Genack, Nat. Photonics 5, 470 (2011).
[CrossRef]

G. Shvets, S. Trendafiliv, V. I. Kopp, D. Neugroschl, and A. Z. Genack, Pure Appl. Opt. 11, 074007 (2009).
[CrossRef]

V. I. Kopp, V. M. Churikov, G. Zhang, J. Singer, C. W. Draper, N. Chao, D. Neugroschl, and A. Z. Genack, J. Opt. Soc. Am. B 24, A48 (2007).
[CrossRef]

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, Science 305, 74 (2004).
[CrossRef]

V. I. Kopp and A. Z. Genack, Opt. Lett. 28, 1876 (2003).
[CrossRef]

Koh, J.

H. I. Sztul, D. A. Nolan, G. Milione, X. Chen, J. Koh, and R. R. Alfano, Proc. SPIE 7227, 722704 (2009).
[CrossRef]

Kopp, V. I.

V. I. Kopp and A. Z. Genack, Nat. Photonics 5, 470 (2011).
[CrossRef]

G. Shvets, S. Trendafiliv, V. I. Kopp, D. Neugroschl, and A. Z. Genack, Pure Appl. Opt. 11, 074007 (2009).
[CrossRef]

V. I. Kopp, V. M. Churikov, G. Zhang, J. Singer, C. W. Draper, N. Chao, D. Neugroschl, and A. Z. Genack, J. Opt. Soc. Am. B 24, A48 (2007).
[CrossRef]

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, Science 305, 74 (2004).
[CrossRef]

V. I. Kopp and A. Z. Genack, Opt. Lett. 28, 1876 (2003).
[CrossRef]

Lapin, B. P.

C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, Phys. Rev. A 83, 063820 (2011).
[CrossRef]

C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, Phys. Rev. A 78, 013813 (2008).
[CrossRef]

Lee, K. S.

Milione, G.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, Phys. Rev. Lett. 107, 053601 (2011).
[CrossRef]

G. Milione, H. I. Sztul, and R. R. Alfano, Proc. SPIE 7613, 761305 (2010).
[CrossRef]

H. I. Sztul, D. A. Nolan, G. Milione, X. Chen, J. Koh, and R. R. Alfano, Proc. SPIE 7227, 722704 (2009).
[CrossRef]

Nelson, K. T.

C. D. Poole, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991).
[CrossRef]

Neugroschl, D.

G. Shvets, S. Trendafiliv, V. I. Kopp, D. Neugroschl, and A. Z. Genack, Pure Appl. Opt. 11, 074007 (2009).
[CrossRef]

V. I. Kopp, V. M. Churikov, G. Zhang, J. Singer, C. W. Draper, N. Chao, D. Neugroschl, and A. Z. Genack, J. Opt. Soc. Am. B 24, A48 (2007).
[CrossRef]

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, Science 305, 74 (2004).
[CrossRef]

Nolan, D. A.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, Phys. Rev. Lett. 107, 053601 (2011).
[CrossRef]

H. I. Sztul, D. A. Nolan, G. Milione, X. Chen, J. Koh, and R. R. Alfano, Proc. SPIE 7227, 722704 (2009).
[CrossRef]

Padgett, M. J.

Poole, C. D.

C. D. Poole, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991).
[CrossRef]

Rashleigh, S. C.

S. C. Rashleigh, J. Lightwave Technol. 1, 312 (1983).
[CrossRef]

Shvets, G.

G. Shvets, S. Trendafiliv, V. I. Kopp, D. Neugroschl, and A. Z. Genack, Pure Appl. Opt. 11, 074007 (2009).
[CrossRef]

Simon, A.

Singer, J.

Sztul, H. I.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, Phys. Rev. Lett. 107, 053601 (2011).
[CrossRef]

G. Milione, H. I. Sztul, and R. R. Alfano, Proc. SPIE 7613, 761305 (2010).
[CrossRef]

H. I. Sztul, D. A. Nolan, G. Milione, X. Chen, J. Koh, and R. R. Alfano, Proc. SPIE 7227, 722704 (2009).
[CrossRef]

Townsend, C. D.

C. D. Poole, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991).
[CrossRef]

Trendafiliv, S.

G. Shvets, S. Trendafiliv, V. I. Kopp, D. Neugroschl, and A. Z. Genack, Pure Appl. Opt. 11, 074007 (2009).
[CrossRef]

Ulrich, R.

Yavorsky, M. A.

C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, Phys. Rev. A 83, 063820 (2011).
[CrossRef]

C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, Phys. Rev. A 78, 013813 (2008).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, Phys. Rev. A 78, 043828 (2008).
[CrossRef]

Zhang, G.

Appl. Opt.

J. Lightwave Technol.

S. C. Rashleigh, J. Lightwave Technol. 1, 312 (1983).
[CrossRef]

C. D. Poole, C. D. Townsend, and K. T. Nelson, J. Lightwave Technol. 9, 598 (1991).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nat. Photonics

V. I. Kopp and A. Z. Genack, Nat. Photonics 5, 470 (2011).
[CrossRef]

Opt. Lett.

Phys. Rev. A

C. N. Alexeyev, B. P. Lapin, and M. A. Yavorsky, Phys. Rev. A 78, 013813 (2008).
[CrossRef]

C. N. Alexeyev and M. A. Yavorsky, Phys. Rev. A 78, 043828 (2008).
[CrossRef]

C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, Phys. Rev. A 83, 063820 (2011).
[CrossRef]

Phys. Rev. Lett.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, Phys. Rev. Lett. 107, 053601 (2011).
[CrossRef]

Proc. SPIE

M. V. Berry, Proc. SPIE 3487, 6 (1998).
[CrossRef]

H. I. Sztul, D. A. Nolan, G. Milione, X. Chen, J. Koh, and R. R. Alfano, Proc. SPIE 7227, 722704 (2009).
[CrossRef]

G. Milione, H. I. Sztul, and R. R. Alfano, Proc. SPIE 7613, 761305 (2010).
[CrossRef]

Pure Appl. Opt.

G. Shvets, S. Trendafiliv, V. I. Kopp, D. Neugroschl, and A. Z. Genack, Pure Appl. Opt. 11, 074007 (2009).
[CrossRef]

Science

V. I. Kopp, V. M. Churikov, J. Singer, N. Chao, D. Neugroschl, and A. Z. Genack, Science 305, 74 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Scheme of an HCF with a controllable twist defect. The HCF of length S0 is cut along the dashed line in two so that the marked half can be rotated through an angle θ.

Fig. 2.
Fig. 2.

(a) Evolution of the final state (red curve) on the generalized PS as a function of the rotation angle θ. Projection on the lower plane (xy) shows the intensity distribution in the fiber’s cross section. The location of the singularity point Σ is determined by the angle ϕ, which equals the azimuth angle φ of the depicting point on the PS. (b) Specific OAM L of the transmitted field as a function of the rotation angle θ. The dashed curve in the inset shows numerical results beyond reflectionless approximation.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

|Ψ1=(cosχ|1,0eiqz+sinχ|1,1)eiβ+z,|Ψ2=(sinχ|1,0eiqz+cosχ|1,1)eiβz,
|σ,l|σ,lei(l+σ)(θ+θ¯),zz0.5s0,
|Φ(z)=c1(z)|1,1+c2(z)|1,0,
c1(z)=cosθ2sinQz2isinθ2cosQz2,c2(z)=[icosθ2cosQz2+sinθ2sinQz2]ei(q0z+θ).
S0=|c1|2+|c2|2,S1=c1c2*+c.c.,S2=i(c1c2*c.c.),S3=|c1|2|c2|2.
S1=sinθcos(θ+s0q0),S2=sinθsin(θ+s0q0),S3=cosθ.
c2F0(r)+c1F1(r)eiφ=0.
ϕ=φ,
L=1ωΦ|i/φ|ΦΦ|Φ,
ωL=cos2(θ/2).
ωL=(1+S3)/2.
|c2|F0(r)+|c1|F1(r)=0.
|c1||c2|=1+S31S3.

Metrics