Abstract

We propose a scheme of overlay alignment for plasmonic lithography using a scanning contact probe. Using two resonances of a ridge aperture in a metal film, we introduce the aperture’s multifunctional characteristics for patterning and alignment at different wavelengths. To verify this idea, we measure an image of an alignment mark using a scanning ridge aperture and determine the reference point for the alignment. We then analyze the uncertainty of the alignment method with respect to the image data noise and compare the numerical results with the experimental results. The uncertainty of the overlay alignment method is shown to be less than approximately 2 nm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).
    [CrossRef]
  2. E. X. Jin and X. Xu, Appl. Phys. B 84, 3 (2006).
    [CrossRef]
  3. Z. Xie and W. Yu, Plasmonics 6, 565 (2011).
    [CrossRef]
  4. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008).
    [CrossRef]
  5. Y. Kim, S. Kim, H. Jung, E. Lee, and J. W. Hahn, Opt. Express 17, 19476 (2009).
    [CrossRef]
  6. N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. Uppuluri, and X. Xu, Opt. Express 16, 2584 (2008).
    [CrossRef]
  7. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, Nano Lett. 6, 361 (2006).
    [CrossRef]
  8. L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, Sci. Rep. 1, 175 (2011).
    [CrossRef]
  9. S. Kim, H. Jung, Y. Kim, J. Jang, and J. W. Hahn, Adv. Mater. 24, OP337 (2012).
  10. T. Lee, E. Lee, S. Oh, and J. W. Hahn, Nanotechnology 24, 145502 (2013).
    [CrossRef]
  11. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, Opt. Express 16, 7756 (2008).
    [CrossRef]
  12. J. Jang, Y. Kim, S. Kim, H. Jung, and J. W. Hahn, Scanning 33, 99 (2011).
    [CrossRef]

2013

T. Lee, E. Lee, S. Oh, and J. W. Hahn, Nanotechnology 24, 145502 (2013).
[CrossRef]

2012

S. Kim, H. Jung, Y. Kim, J. Jang, and J. W. Hahn, Adv. Mater. 24, OP337 (2012).

2011

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, Sci. Rep. 1, 175 (2011).
[CrossRef]

J. Jang, Y. Kim, S. Kim, H. Jung, and J. W. Hahn, Scanning 33, 99 (2011).
[CrossRef]

Z. Xie and W. Yu, Plasmonics 6, 565 (2011).
[CrossRef]

2010

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).
[CrossRef]

2009

2008

2006

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, Nano Lett. 6, 361 (2006).
[CrossRef]

E. X. Jin and X. Xu, Appl. Phys. B 84, 3 (2006).
[CrossRef]

Bogy, D. B.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, Sci. Rep. 1, 175 (2011).
[CrossRef]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).
[CrossRef]

Fu, L.

Giessen, H.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).
[CrossRef]

Guo, H.

Hahn, J. W.

T. Lee, E. Lee, S. Oh, and J. W. Hahn, Nanotechnology 24, 145502 (2013).
[CrossRef]

S. Kim, H. Jung, Y. Kim, J. Jang, and J. W. Hahn, Adv. Mater. 24, OP337 (2012).

J. Jang, Y. Kim, S. Kim, H. Jung, and J. W. Hahn, Scanning 33, 99 (2011).
[CrossRef]

Y. Kim, S. Kim, H. Jung, E. Lee, and J. W. Hahn, Opt. Express 17, 19476 (2009).
[CrossRef]

Jang, J.

S. Kim, H. Jung, Y. Kim, J. Jang, and J. W. Hahn, Adv. Mater. 24, OP337 (2012).

J. Jang, Y. Kim, S. Kim, H. Jung, and J. W. Hahn, Scanning 33, 99 (2011).
[CrossRef]

Jin, E. X.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, Nano Lett. 6, 361 (2006).
[CrossRef]

E. X. Jin and X. Xu, Appl. Phys. B 84, 3 (2006).
[CrossRef]

Jung, H.

S. Kim, H. Jung, Y. Kim, J. Jang, and J. W. Hahn, Adv. Mater. 24, OP337 (2012).

J. Jang, Y. Kim, S. Kim, H. Jung, and J. W. Hahn, Scanning 33, 99 (2011).
[CrossRef]

Y. Kim, S. Kim, H. Jung, E. Lee, and J. W. Hahn, Opt. Express 17, 19476 (2009).
[CrossRef]

Kim, S.

S. Kim, H. Jung, Y. Kim, J. Jang, and J. W. Hahn, Adv. Mater. 24, OP337 (2012).

J. Jang, Y. Kim, S. Kim, H. Jung, and J. W. Hahn, Scanning 33, 99 (2011).
[CrossRef]

Y. Kim, S. Kim, H. Jung, E. Lee, and J. W. Hahn, Opt. Express 17, 19476 (2009).
[CrossRef]

Kim, Y.

S. Kim, H. Jung, Y. Kim, J. Jang, and J. W. Hahn, Adv. Mater. 24, OP337 (2012).

J. Jang, Y. Kim, S. Kim, H. Jung, and J. W. Hahn, Scanning 33, 99 (2011).
[CrossRef]

Y. Kim, S. Kim, H. Jung, E. Lee, and J. W. Hahn, Opt. Express 17, 19476 (2009).
[CrossRef]

Kinzel, E. C.

Lee, E.

T. Lee, E. Lee, S. Oh, and J. W. Hahn, Nanotechnology 24, 145502 (2013).
[CrossRef]

Y. Kim, S. Kim, H. Jung, E. Lee, and J. W. Hahn, Opt. Express 17, 19476 (2009).
[CrossRef]

Lee, T.

T. Lee, E. Lee, S. Oh, and J. W. Hahn, Nanotechnology 24, 145502 (2013).
[CrossRef]

Liu, N.

Meyrath, T. P.

Murphy-DuBay, N.

Oh, S.

T. Lee, E. Lee, S. Oh, and J. W. Hahn, Nanotechnology 24, 145502 (2013).
[CrossRef]

Pan, L.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, Sci. Rep. 1, 175 (2011).
[CrossRef]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008).
[CrossRef]

Park, Y.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, Sci. Rep. 1, 175 (2011).
[CrossRef]

Rho, J.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, Sci. Rep. 1, 175 (2011).
[CrossRef]

Schweizer, H.

Srituravanich, W.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008).
[CrossRef]

Sun, C.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, Sci. Rep. 1, 175 (2011).
[CrossRef]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008).
[CrossRef]

Ulin-Avila, E.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, Sci. Rep. 1, 175 (2011).
[CrossRef]

Uppuluri, S. M.

Wang, L.

Wang, Y.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, Sci. Rep. 1, 175 (2011).
[CrossRef]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008).
[CrossRef]

Xie, Z.

Z. Xie and W. Yu, Plasmonics 6, 565 (2011).
[CrossRef]

Xiong, S.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, Sci. Rep. 1, 175 (2011).
[CrossRef]

Xiong, Y.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, Sci. Rep. 1, 175 (2011).
[CrossRef]

Xu, X.

N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. Uppuluri, and X. Xu, Opt. Express 16, 2584 (2008).
[CrossRef]

E. X. Jin and X. Xu, Appl. Phys. B 84, 3 (2006).
[CrossRef]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, Nano Lett. 6, 361 (2006).
[CrossRef]

Yu, W.

Z. Xie and W. Yu, Plasmonics 6, 565 (2011).
[CrossRef]

Zeng, L.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, Sci. Rep. 1, 175 (2011).
[CrossRef]

Zentgraf, T.

Zhang, X.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, Sci. Rep. 1, 175 (2011).
[CrossRef]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008).
[CrossRef]

Adv. Mater.

S. Kim, H. Jung, Y. Kim, J. Jang, and J. W. Hahn, Adv. Mater. 24, OP337 (2012).

Appl. Phys. B

E. X. Jin and X. Xu, Appl. Phys. B 84, 3 (2006).
[CrossRef]

Nano Lett.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, Nano Lett. 6, 361 (2006).
[CrossRef]

Nanotechnology

T. Lee, E. Lee, S. Oh, and J. W. Hahn, Nanotechnology 24, 145502 (2013).
[CrossRef]

Nat. Nanotechnol.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008).
[CrossRef]

Nat. Photonics

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).
[CrossRef]

Opt. Express

Plasmonics

Z. Xie and W. Yu, Plasmonics 6, 565 (2011).
[CrossRef]

Scanning

J. Jang, Y. Kim, S. Kim, H. Jung, and J. W. Hahn, Scanning 33, 99 (2011).
[CrossRef]

Sci. Rep.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, Sci. Rep. 1, 175 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Concept of a plasmonic multifunctional probe. A ridge aperture has high transmission originating from Fabry–Perot resonance at λL for plasmonic lithography and high sensitivity due to plasmonic resonance at λA for detecting a mark pattern on a substrate. A large shift of the plasmonic resonance for variation of the refractive index of the material underneath the ridge aperture is plotted in the lower area of the figure, leading to a large signal for detecting the mark pattern. The mark pattern is measured at wavelength λA, which is not sensitive to exposure of the photoresist.

Fig. 2.
Fig. 2.

(a) Calculated 2D image showing the determination process of a reference point with the calculated image of the mark pattern. The inset shows the calculated image of an arm of the mark pattern with 14% random noise. A, splitting the image data of each arm into 50 line profiles to fit with a super-Lorentzian function, to find the center of the pattern (see text); B, scattered data points result from the fitting of line profiles; C, each set of a vertical and a horizontal center line is separately fitted with a linear function to find their cross point. Two solid lines result from the line fittings. D, the reference point of the mark. (b) Uncertainty of the reference point estimated from 3 times the fitting error σ as a function of SNR.

Fig. 3.
Fig. 3.

Experimental 2D image and the corresponding reference point of the mark obtained by the algorithm, accompanied by the line profiles and curve fittings of each bar.

Metrics