Abstract

Using the dyadic Green function (GF) with a multilayer medium, we propose an eigendecomposition (ED) analysis of a plasmonic system composed of a one-dimensional periodic metal nanoparticle chain and planar layered structure. An effective eigenpolarizability involving the collective effects of both the chain and the layered structure is well defined to characterize the dispersion relation and the mode quality of the plasmonic modes. Applying this method, we demonstrate that the interplay between the surface plasmon polaritons (SPPs) at the metal–dielectric interface and the localized plasmon in the chain enables strong mode splitting. In particular, for the polarization perpendicular to layer surface, high-quality modes can be present inside the light cone even if the chain is open to the surrounding air. A slow-light band is also predicted to exist as long as the layered medium supports a SPP mode that can couple to the chain mode.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Weber and G. W. Ford, Phys. Rev. B 70, 125429 (2004).
    [CrossRef]
  2. K. H. Fung and C. T. Chan, Opt. Lett. 32, 973 (2007).
    [CrossRef]
  3. P. Holmström, L. Thylén, and A. Bratkovsky, Appl. Phys. Lett. 97, 073110 (2010).
    [CrossRef]
  4. R. E. Noskov, P. A. Belov, and Y. S. Kivshar, Phys. Rev. Lett. 108, 093901 (2012).
    [CrossRef]
  5. K. H. Fung, R. C. H. Tang, and C. T. Chan, Opt. Lett. 36, 2206 (2011).
    [CrossRef]
  6. G. Leveque and R. Quidant, Opt. Express 16, 22029 (2008).
    [CrossRef]
  7. D. Brunazzo, E. Descrovi, and O. J. F. Martin, Opt. Lett. 34, 1405 (2009).
    [CrossRef]
  8. F. Zhou, Y. Liu, and Z.-Y. Li, Opt. Lett. 36, 1969 (2011).
    [CrossRef]
  9. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, Opt. Lett. 30, 3404 (2005).
    [CrossRef]
  10. J. A. Kong, Electromagnetic Wave Theory (EMW, 2008).

2012 (1)

R. E. Noskov, P. A. Belov, and Y. S. Kivshar, Phys. Rev. Lett. 108, 093901 (2012).
[CrossRef]

2011 (2)

2010 (1)

P. Holmström, L. Thylén, and A. Bratkovsky, Appl. Phys. Lett. 97, 073110 (2010).
[CrossRef]

2009 (1)

2008 (1)

2007 (1)

2005 (1)

2004 (1)

W. H. Weber and G. W. Ford, Phys. Rev. B 70, 125429 (2004).
[CrossRef]

Badenes, G.

Belov, P. A.

R. E. Noskov, P. A. Belov, and Y. S. Kivshar, Phys. Rev. Lett. 108, 093901 (2012).
[CrossRef]

Bratkovsky, A.

P. Holmström, L. Thylén, and A. Bratkovsky, Appl. Phys. Lett. 97, 073110 (2010).
[CrossRef]

Brunazzo, D.

Cesario, J.

Chan, C. T.

Descrovi, E.

Enoch, S.

Ford, G. W.

W. H. Weber and G. W. Ford, Phys. Rev. B 70, 125429 (2004).
[CrossRef]

Fung, K. H.

Holmström, P.

P. Holmström, L. Thylén, and A. Bratkovsky, Appl. Phys. Lett. 97, 073110 (2010).
[CrossRef]

Kivshar, Y. S.

R. E. Noskov, P. A. Belov, and Y. S. Kivshar, Phys. Rev. Lett. 108, 093901 (2012).
[CrossRef]

Kong, J. A.

J. A. Kong, Electromagnetic Wave Theory (EMW, 2008).

Leveque, G.

Li, Z.-Y.

Liu, Y.

Martin, O. J. F.

Noskov, R. E.

R. E. Noskov, P. A. Belov, and Y. S. Kivshar, Phys. Rev. Lett. 108, 093901 (2012).
[CrossRef]

Quidant, R.

Tang, R. C. H.

Thylén, L.

P. Holmström, L. Thylén, and A. Bratkovsky, Appl. Phys. Lett. 97, 073110 (2010).
[CrossRef]

Weber, W. H.

W. H. Weber and G. W. Ford, Phys. Rev. B 70, 125429 (2004).
[CrossRef]

Zhou, F.

Appl. Phys. Lett. (1)

P. Holmström, L. Thylén, and A. Bratkovsky, Appl. Phys. Lett. 97, 073110 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. B (1)

W. H. Weber and G. W. Ford, Phys. Rev. B 70, 125429 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

R. E. Noskov, P. A. Belov, and Y. S. Kivshar, Phys. Rev. Lett. 108, 093901 (2012).
[CrossRef]

Other (1)

J. A. Kong, Electromagnetic Wave Theory (EMW, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Periodic MNP chain on a three-layered medium. The chain is in the (ε1,μ1) medium. The neighboring media are (ε2,μ2) and (ε3,μ3).

Fig. 2.
Fig. 2.

Dispersion relation of a plasmonic chain on layered medium. (a)–(c) Case I: air–ITO with d=0. (d)–(f) Case II: air–ITO–silver with d=5nm. zd=25nm in both cases. Left, middle, and right columns correspond to the polarization of main-x, pure-y, and main-z, respectively. Red indicates resonant guided modes of the whole plasmonic system.

Fig. 3.
Fig. 3.

Field distribution at k=0 at the resonant frequency for pure-y polarization. (a) Air–ITO. (b), (c) Upper and lower mode in air–ITO–silver, showing the in-phase and antiphase properties between the particles and the substrate.

Fig. 4.
Fig. 4.

Slow-light band in three-layer medium of (a) air–ITO–silver, same as Fig. 2(f) and of (b) silver–ITO–silver with the chain located in the ITO core layer.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

pm=4πε0α(ω)[Emext+ω2μ0Gsca(rm,rn)pn+ω2μ0nmGfree(rm,rn)pn],
Gsca(r,r)=i4π0dkkk2z[(SEeik1zzeik2zz+SE+eik1zzeik2zz)E^E^+SHeik1zzeik2zzH^(k1z)H^(k2z)+SH+eik1zzeik2zzH^(k1z)H^(k2z)],
[M]3N×3Np=[Eext],
[M˜(k,ω)]3×3p˜=(α1[I˜][G˜Σ,sca][G˜Σ,free])p˜=[E˜0],
G˜Σ,free=4πk02n=,n0+Gfree(nax^,0^)eikna=(GlΣ,free000GtΣ,free000GtΣ,free),
G˜Σ,sca=4πk02n=+Gsca(nax^,0^)eikna=(GxxΣ,sca0GxzΣ,sca0GyyΣ,sca0GzxΣ,sca0GzzΣ,sca),
GxxΣ,sca=n=ik12eikna0dkk2k1z[RTE(J0(kna)+J2(kna))+RTM(J0(kna)J2(kna))k1z2k12],
GyyΣ,sca=n=ik12eikna0dkk2k1z[RTE(J0(kna)J2(kna))+RTM(J0(kna)+J2(kna))k1z2k12],
GzzΣ,sca=n=ik12eikna0dkkk1z[RTMJ0(kna)k2k12],
GxzΣ,sca=GzxΣ,sca=n=k12eikna0dkkk1z[RTMJ1(kna)k1zkk12].

Metrics