Abstract

Time-resolved photoluminescence is used to determine carrier recombination through radiative and nonradiative processes in zinc hydroxide Zn(OH)2 and its porous composites with graphite oxide (GO). The decay times, measured by a streak camera, are found to be larger for zinc hydroxide (1215±156ps) than its composites (976±81ps for ZnGO-2 and 742±59ps for ZnGO-5), but no significant changes in rise times (from 4.0 to 5.0 ps) are recorded. The dominant mechanism for the radiative process is attributed to free carrier recombination, while microporous networks present in these materials are found to be pathways for the nonradiative recombination process via multiphonon emission.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Mabayoje, M. Seredych, and T. J. Bandosz, Appl. Catal. B 132–133, 321 (2013).
    [CrossRef]
  2. T. J. Bandosz, J. Matos, M. Seredych, M. S. Z. Islam, and R. Alfano, Appl. Catal. A Gen. 445–446, 159 (2012).
    [CrossRef]
  3. M. Seredych, O. Mabayoje, M. Kolesnik, V. Krstic, and T. J. Bandosz, J. Mater. Chem. 22, 7970 (2012).
    [CrossRef]
  4. H. J. Zarrabi, W. B. Wang, and R. Alfano, Appl. Phys. Lett. 46, 513 (1985).
    [CrossRef]
  5. SM. Z. Islam, T. Gayen, A. Moussawi, L. Shi, M. Seredych, T. J. Bandosz, and R. R. Alfano, Opt. Lett. 38, 962 (2013).
    [CrossRef]
  6. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).
    [CrossRef]
  7. C. E. Swenberg, Biological Events Probed by Ultrafast Laser Spectroscopy, R. Alfano, ed. (Academic, 1982), Chap. 7.
  8. J. K. A. Bluman, J. Chem. Phys 80, 875 (1984).
    [CrossRef]

2013 (2)

2012 (2)

T. J. Bandosz, J. Matos, M. Seredych, M. S. Z. Islam, and R. Alfano, Appl. Catal. A Gen. 445–446, 159 (2012).
[CrossRef]

M. Seredych, O. Mabayoje, M. Kolesnik, V. Krstic, and T. J. Bandosz, J. Mater. Chem. 22, 7970 (2012).
[CrossRef]

1985 (1)

H. J. Zarrabi, W. B. Wang, and R. Alfano, Appl. Phys. Lett. 46, 513 (1985).
[CrossRef]

1984 (1)

J. K. A. Bluman, J. Chem. Phys 80, 875 (1984).
[CrossRef]

1958 (1)

W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).
[CrossRef]

Alfano, R.

T. J. Bandosz, J. Matos, M. Seredych, M. S. Z. Islam, and R. Alfano, Appl. Catal. A Gen. 445–446, 159 (2012).
[CrossRef]

H. J. Zarrabi, W. B. Wang, and R. Alfano, Appl. Phys. Lett. 46, 513 (1985).
[CrossRef]

Alfano, R. R.

Bandosz, T. J.

SM. Z. Islam, T. Gayen, A. Moussawi, L. Shi, M. Seredych, T. J. Bandosz, and R. R. Alfano, Opt. Lett. 38, 962 (2013).
[CrossRef]

O. Mabayoje, M. Seredych, and T. J. Bandosz, Appl. Catal. B 132–133, 321 (2013).
[CrossRef]

M. Seredych, O. Mabayoje, M. Kolesnik, V. Krstic, and T. J. Bandosz, J. Mater. Chem. 22, 7970 (2012).
[CrossRef]

T. J. Bandosz, J. Matos, M. Seredych, M. S. Z. Islam, and R. Alfano, Appl. Catal. A Gen. 445–446, 159 (2012).
[CrossRef]

Bluman, J. K. A.

J. K. A. Bluman, J. Chem. Phys 80, 875 (1984).
[CrossRef]

Gayen, T.

Hummers, W. S.

W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).
[CrossRef]

Islam, M. S. Z.

T. J. Bandosz, J. Matos, M. Seredych, M. S. Z. Islam, and R. Alfano, Appl. Catal. A Gen. 445–446, 159 (2012).
[CrossRef]

Islam, SM. Z.

Kolesnik, M.

M. Seredych, O. Mabayoje, M. Kolesnik, V. Krstic, and T. J. Bandosz, J. Mater. Chem. 22, 7970 (2012).
[CrossRef]

Krstic, V.

M. Seredych, O. Mabayoje, M. Kolesnik, V. Krstic, and T. J. Bandosz, J. Mater. Chem. 22, 7970 (2012).
[CrossRef]

Mabayoje, O.

O. Mabayoje, M. Seredych, and T. J. Bandosz, Appl. Catal. B 132–133, 321 (2013).
[CrossRef]

M. Seredych, O. Mabayoje, M. Kolesnik, V. Krstic, and T. J. Bandosz, J. Mater. Chem. 22, 7970 (2012).
[CrossRef]

Matos, J.

T. J. Bandosz, J. Matos, M. Seredych, M. S. Z. Islam, and R. Alfano, Appl. Catal. A Gen. 445–446, 159 (2012).
[CrossRef]

Moussawi, A.

Offeman, R. E.

W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).
[CrossRef]

Seredych, M.

SM. Z. Islam, T. Gayen, A. Moussawi, L. Shi, M. Seredych, T. J. Bandosz, and R. R. Alfano, Opt. Lett. 38, 962 (2013).
[CrossRef]

O. Mabayoje, M. Seredych, and T. J. Bandosz, Appl. Catal. B 132–133, 321 (2013).
[CrossRef]

M. Seredych, O. Mabayoje, M. Kolesnik, V. Krstic, and T. J. Bandosz, J. Mater. Chem. 22, 7970 (2012).
[CrossRef]

T. J. Bandosz, J. Matos, M. Seredych, M. S. Z. Islam, and R. Alfano, Appl. Catal. A Gen. 445–446, 159 (2012).
[CrossRef]

Shi, L.

Swenberg, C. E.

C. E. Swenberg, Biological Events Probed by Ultrafast Laser Spectroscopy, R. Alfano, ed. (Academic, 1982), Chap. 7.

Wang, W. B.

H. J. Zarrabi, W. B. Wang, and R. Alfano, Appl. Phys. Lett. 46, 513 (1985).
[CrossRef]

Zarrabi, H. J.

H. J. Zarrabi, W. B. Wang, and R. Alfano, Appl. Phys. Lett. 46, 513 (1985).
[CrossRef]

Appl. Catal. A Gen. (1)

T. J. Bandosz, J. Matos, M. Seredych, M. S. Z. Islam, and R. Alfano, Appl. Catal. A Gen. 445–446, 159 (2012).
[CrossRef]

Appl. Catal. B (1)

O. Mabayoje, M. Seredych, and T. J. Bandosz, Appl. Catal. B 132–133, 321 (2013).
[CrossRef]

Appl. Phys. Lett. (1)

H. J. Zarrabi, W. B. Wang, and R. Alfano, Appl. Phys. Lett. 46, 513 (1985).
[CrossRef]

J. Am. Chem. Soc. (1)

W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).
[CrossRef]

J. Chem. Phys (1)

J. K. A. Bluman, J. Chem. Phys 80, 875 (1984).
[CrossRef]

J. Mater. Chem. (1)

M. Seredych, O. Mabayoje, M. Kolesnik, V. Krstic, and T. J. Bandosz, J. Mater. Chem. 22, 7970 (2012).
[CrossRef]

Opt. Lett. (1)

Other (1)

C. E. Swenberg, Biological Events Probed by Ultrafast Laser Spectroscopy, R. Alfano, ed. (Academic, 1982), Chap. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup used for time-resolved photoluminescence measurements. M, mirrors; BS, beam splitter; LP, long-pass filter; SP, short-pass filter; BBO, second-harmonic generator; L, lenses; SIT, silicon intensified target.

Fig. 2.
Fig. 2.

TRPL spectra of Zn(OH)2, ZnGO-2, and ZnGO-5 are shown together in (a), and Zn(OH)2, ZnGO-2, and ZnGO-5 are shown separately in (b)–(d).

Fig. 3.
Fig. 3.

TPF images show light-emitting regions (i.e., aggregates of particles) and distribution of pores (i.e., white areas) of many sizes in Zn(OH)2, ZnGO-2, and ZnGO-5, and pathways of light traveling and trapping.

Fig. 4.
Fig. 4.

Fluorescence intensity profiles for different values of fluorescent decay rate constant (k).

Tables (1)

Tables Icon

Table 1. Lifetime (τ0), Rise Time (τ1), and Fluorescence Decay Rate Constant (k) of Zn(OH)2, ZnGO-2, and ZnGO-5 Provided Best Fit to Fluorescence (TRPL) Profiles

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I(t)=A1[ekt1/3t/τ0et/τ1]+A2[et/τ0et/τ1],
I(t)=A[ekt1/3t/τ0+et/τ02et/τ1],

Metrics