Abstract

We propose and experimentally demonstrate a 2×2 3 dB adiabatic splitter based on silicon-on-insulator technology, with simultaneous tapering of the phase velocity and coupling. The advantages of the proposed splitter are indicated by analyzing the effective index evolution of the system modes and comparing them with the simulated performances. The experimental results are in good agreement with the simulations. Over the 100 nm wavelength range measured, the output uniformity is better than 0.2 dB. A low and flat excess loss of about 0.3 dB per splitter is obtained, with a variation below 0.2 dB.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, IEEE J. Sel. Top. Quantum Electron. 12, 1678 (2006).
    [CrossRef]
  2. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, IEEE J. Sel. Top. Quantum Electron. 16, 159 (2010).
    [CrossRef]
  3. L. Chen and Y. K. Chen, Opt. Express 20, 18977 (2012).
    [CrossRef]
  4. D. X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delâge, S. Janz, P. Cheben, J. Schmid, and B. Lamontagne, Opt. Express 15, 3149 (2007).
    [CrossRef]
  5. P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, Opt. Express 18, 25225 (2010).
    [CrossRef]
  6. K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photon. Technol. Lett. 18, 2287 (2006).
    [CrossRef]
  7. T. A. Ramadan, R. Scarmozzino, and R. M. Osgood, J. Lightwave Technol. 16, 277 (1998).
    [CrossRef]
  8. A. Yariv, IEEE J. Quantum Electron. 9, 919 (1973).
    [CrossRef]
  9. C. Zhang, J. H. Sun, X. Xiao, W. M. Sun, X. J. Zhang, T. Chu, J. Z. Yu, and Y. D. Yu, Chin. Phys. Lett. 30, 014207 (2013).
    [CrossRef]

2013

C. Zhang, J. H. Sun, X. Xiao, W. M. Sun, X. J. Zhang, T. Chu, J. Z. Yu, and Y. D. Yu, Chin. Phys. Lett. 30, 014207 (2013).
[CrossRef]

2012

2010

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, IEEE J. Sel. Top. Quantum Electron. 16, 159 (2010).
[CrossRef]

P. Dong, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, Opt. Express 18, 25225 (2010).
[CrossRef]

2007

2006

R. Soref, IEEE J. Sel. Top. Quantum Electron. 12, 1678 (2006).
[CrossRef]

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photon. Technol. Lett. 18, 2287 (2006).
[CrossRef]

1998

1973

A. Yariv, IEEE J. Quantum Electron. 9, 919 (1973).
[CrossRef]

Aalto, T.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photon. Technol. Lett. 18, 2287 (2006).
[CrossRef]

Asghari, M.

Cheben, P.

Chen, L.

Chen, Y. K.

Chu, T.

C. Zhang, J. H. Sun, X. Xiao, W. M. Sun, X. J. Zhang, T. Chu, J. Z. Yu, and Y. D. Yu, Chin. Phys. Lett. 30, 014207 (2013).
[CrossRef]

Delâge, A.

Densmore, A.

Dong, P.

Feng, D.

Harjanne, M.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photon. Technol. Lett. 18, 2287 (2006).
[CrossRef]

Janz, S.

Kapulainen, M.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photon. Technol. Lett. 18, 2287 (2006).
[CrossRef]

Krishnamoorthy, A. V.

Lamontagne, B.

Lapointe, J.

Lentine, A. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, IEEE J. Sel. Top. Quantum Electron. 16, 159 (2010).
[CrossRef]

Li, G.

Liang, H.

Liao, S.

Osgood, R. M.

Post, E.

Ramadan, T. A.

Scarmozzino, R.

Schmid, J.

Shafiiha, R.

Solehmainen, K.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photon. Technol. Lett. 18, 2287 (2006).
[CrossRef]

Soref, R.

R. Soref, IEEE J. Sel. Top. Quantum Electron. 12, 1678 (2006).
[CrossRef]

Sun, J. H.

C. Zhang, J. H. Sun, X. Xiao, W. M. Sun, X. J. Zhang, T. Chu, J. Z. Yu, and Y. D. Yu, Chin. Phys. Lett. 30, 014207 (2013).
[CrossRef]

Sun, W. M.

C. Zhang, J. H. Sun, X. Xiao, W. M. Sun, X. J. Zhang, T. Chu, J. Z. Yu, and Y. D. Yu, Chin. Phys. Lett. 30, 014207 (2013).
[CrossRef]

Trotter, D. C.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, IEEE J. Sel. Top. Quantum Electron. 16, 159 (2010).
[CrossRef]

Waldron, P.

Watts, M. R.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, IEEE J. Sel. Top. Quantum Electron. 16, 159 (2010).
[CrossRef]

Xiao, X.

C. Zhang, J. H. Sun, X. Xiao, W. M. Sun, X. J. Zhang, T. Chu, J. Z. Yu, and Y. D. Yu, Chin. Phys. Lett. 30, 014207 (2013).
[CrossRef]

Xu, D. X.

Yariv, A.

A. Yariv, IEEE J. Quantum Electron. 9, 919 (1973).
[CrossRef]

Young, R. W.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, IEEE J. Sel. Top. Quantum Electron. 16, 159 (2010).
[CrossRef]

Yu, J. Z.

C. Zhang, J. H. Sun, X. Xiao, W. M. Sun, X. J. Zhang, T. Chu, J. Z. Yu, and Y. D. Yu, Chin. Phys. Lett. 30, 014207 (2013).
[CrossRef]

Yu, Y. D.

C. Zhang, J. H. Sun, X. Xiao, W. M. Sun, X. J. Zhang, T. Chu, J. Z. Yu, and Y. D. Yu, Chin. Phys. Lett. 30, 014207 (2013).
[CrossRef]

Zhang, C.

C. Zhang, J. H. Sun, X. Xiao, W. M. Sun, X. J. Zhang, T. Chu, J. Z. Yu, and Y. D. Yu, Chin. Phys. Lett. 30, 014207 (2013).
[CrossRef]

Zhang, X. J.

C. Zhang, J. H. Sun, X. Xiao, W. M. Sun, X. J. Zhang, T. Chu, J. Z. Yu, and Y. D. Yu, Chin. Phys. Lett. 30, 014207 (2013).
[CrossRef]

Zheng, X.

Zortman, W. A.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, IEEE J. Sel. Top. Quantum Electron. 16, 159 (2010).
[CrossRef]

Chin. Phys. Lett.

C. Zhang, J. H. Sun, X. Xiao, W. M. Sun, X. J. Zhang, T. Chu, J. Z. Yu, and Y. D. Yu, Chin. Phys. Lett. 30, 014207 (2013).
[CrossRef]

IEEE J. Quantum Electron.

A. Yariv, IEEE J. Quantum Electron. 9, 919 (1973).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. Soref, IEEE J. Sel. Top. Quantum Electron. 12, 1678 (2006).
[CrossRef]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, IEEE J. Sel. Top. Quantum Electron. 16, 159 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photon. Technol. Lett. 18, 2287 (2006).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic drawings of (a) the divided and (b) integrated 2×2 3 dB adiabatic splitter designs.

Fig. 2.
Fig. 2.

(a) Effective index and (b) coupling strength of the divided splitter (red and blue lines) and the proposed splitter (black line) as a function of the propagation position in the adiabatic region at a wavelength of 1550 nm.

Fig. 3.
Fig. 3.

Simulated normalized power ratio of (a) the divided splitter and (b) the proposed splitter as a function of the narrowest gap at a wavelength of 1550 nm.

Fig. 4.
Fig. 4.

Simulated normalized power ratio as a function of the length of the adiabatic region for (a) the divided splitter and (b) the proposed splitter at a wavelength of 1550 nm when G=100nm and L1/L2=1/2, and as a function of wavelength for (c) the divided splitter and (d) the proposed splitter when G=100nm and L=300μm.

Fig. 5.
Fig. 5.

Simulated normalized power ratio of the proposed splitter as a function of (a) the width deviation and (b) the etching depth variation when G=100nm and L=300μm at a wavelength of 1550 nm.

Fig. 6.
Fig. 6.

Microscope and SEM views of the cascading of 4 levels of splitters.

Fig. 7.
Fig. 7.

(a) Measured insertion loss of each output and EL of 4, 8, and 12 levels of cascaded splitters as a function of wavelength. (b) The average insertion loss of each output and EL for a single splitter as a function of wavelength. (c) Fitted EL per splitter and propagation loss of the corresponding reference waveguide at a wavelength of 1550 nm.

Fig. 8.
Fig. 8.

Measured ER of the asymmetrical MZI structure as a function of wavelength.

Metrics