Abstract

We show that direct measurement of the beam radius in Z-scan experiments using a CCD camera at the output of a 4f-imaging system allows higher sensitivity and better accuracy than Baryscan. One of the advantages is to be insensitive to pointing instability of pulsed lasers because no hard (physical) aperture is employed as in the usual Z-scan. In addition, the numerical calculations involved here and the measurement of the beam radius are simplified since we do not measure the transmittance through an aperture and it is not subject to mathematical artifacts related to a normalization process, especially when the diffracted light intensity is very low.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
    [CrossRef]
  2. T. Godin, M. Fromager, E. Cagniot, R. Moncorgé, and K. Aït-Ameur, Opt. Lett. 36, 1401 (2011).
    [CrossRef]
  3. M. R. Ferdinandus, M. Reichert, T. R. Ensley, H. Hu, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. van Stryland, Opt. Mater. Express 2, 1776 (2012).
    [CrossRef]
  4. K. Fedus and G. Boudebs, J. Opt. Soc. Am. B 26, 244 (2009).
    [CrossRef]
  5. K. Fedus and G. Boudebs, Opt. Commun. 292, 140 (2013).
    [CrossRef]
  6. T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. van Stryland, Opt. Lett. 19, 317 (1994).
    [CrossRef]
  7. G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, Appl. Phys. B 76, 83 (2003).
    [CrossRef]
  8. G. Boudebs, M. Chis, and J. P. Bourdin, J. Opt. Soc. Am. B 13, 1450 (1996).
    [CrossRef]
  9. ISO Standard 11146, “Test methods for laser beam widths, divergence angles and beam propagation ratios” (2005), http://www.iso.org/iso/catalogue_detail.htm?csnumber=33626 .

2013

K. Fedus and G. Boudebs, Opt. Commun. 292, 140 (2013).
[CrossRef]

2012

2011

2009

2003

G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, Appl. Phys. B 76, 83 (2003).
[CrossRef]

1996

1994

1990

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Aït-Ameur, K.

Boudebs, G.

Bourdin, J. P.

Cagniot, E.

Chis, M.

Ensley, T. R.

Fakis, M.

G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, Appl. Phys. B 76, 83 (2003).
[CrossRef]

Fedus, K.

K. Fedus and G. Boudebs, Opt. Commun. 292, 140 (2013).
[CrossRef]

K. Fedus and G. Boudebs, J. Opt. Soc. Am. B 26, 244 (2009).
[CrossRef]

Ferdinandus, M. R.

Fishman, D. A.

Fromager, M.

Giannetas, V.

G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, Appl. Phys. B 76, 83 (2003).
[CrossRef]

Godin, T.

Hagan, D.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Hagan, D. J.

Hu, H.

Moncorgé, R.

Persephonis, P.

G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, Appl. Phys. B 76, 83 (2003).
[CrossRef]

Polyzos, I.

G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, Appl. Phys. B 76, 83 (2003).
[CrossRef]

Reichert, M.

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Sheik-Bahae, M.

T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. van Stryland, Opt. Lett. 19, 317 (1994).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Tsigaridas, G.

G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, Appl. Phys. B 76, 83 (2003).
[CrossRef]

van Stryland, E. W.

Webster, S.

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Xia, T.

Appl. Phys. B

G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, Appl. Phys. B 76, 83 (2003).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

K. Fedus and G. Boudebs, Opt. Commun. 292, 140 (2013).
[CrossRef]

Opt. Lett.

Opt. Mater. Express

Other

ISO Standard 11146, “Test methods for laser beam widths, divergence angles and beam propagation ratios” (2005), http://www.iso.org/iso/catalogue_detail.htm?csnumber=33626 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the 4f system. The sample (M) is moved along the focal region. The labels refer to lenses (L1L2).

Fig. 2.
Fig. 2.

(a) BWRV versus z. The other parameters are φNL0eff=0.8 and q0=0.58. (b) Calculated Δωpv, versus the effective phase shift at the focus.

Fig. 3.
Fig. 3.

(a) Comparison between D4σ measurements (squares) with those of Baryscan (circles). The solid and dashed lines show the numerical results. (b) Comparison of the BWRV (squares; vertically shifted to 1) and the usual Z-scan transmittance (stars) for a highly NL absorbing material. The inset shows the open aperture Z-scan transmittance.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T(u,v,z)={eαL[1+q(u,v,z)]}1/2exp[jΔϕNLeff(u,v,z)],
ωx=2++I(x,y)(xx¯)2dxdy++I(x,y)dxdy,

Metrics