Abstract

We present a robust method to inspect a typical composite material constructed of carbon fiber reinforced plastic (CFRP). It is based on optical surface contouring using the spatial light modulator (SLM)-based phase retrieval technique. The method utilizes multiple intensity observations of the wave field, diffracted by the investigated object, captured at different planes along the optical axis to recover the phase information across the object plane. The SLM-based system allows for the recording of the required consecutive intensity measurements in various propagation states across a common recording plane. This overcomes the mechanical shifting of a camera sensor required within the capturing process. In contrast to existing phase retrieval approaches, the measuring time is considerably reduced, since the switching time of the SLM is less than 50 ms. This enables nondestructive testing under thermal load. Experimental results are presented that demonstrate the approach can be used to assess structural properties of technical components made from CFRP.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Kreis, Holographic Interferometry, W. Jüptner and W. Osten, eds., 1st ed. (Akademie, 1996).
  2. U. Schnars and W. Jüptner, Digital Holography (Springer, 2005).
  3. J. N. Butters, Opt. Laser Technol. 9, 117 (1977).
    [CrossRef]
  4. Y. Y. Hung, Appl. Opt. 18, 1046 (1979).
    [CrossRef]
  5. R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).
  6. C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, J. Opt. 14, 065701 (2012).
    [CrossRef]
  7. C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, Appl. Opt. 49, 1826 (2010).
    [CrossRef]
  8. C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, AIP Conf. Proc. 1236, 259 (2010).
    [CrossRef]
  9. M. Agour, C. Falldorf, C. von Kopylow, and R. B. Bergmann, Appl. Opt. 50, 4779 (2011).
    [CrossRef]
  10. M. Agour, P. Huke, C. von Kopylow, and C. Falldorf, AIP Conf. Proc. 1236, 265 (2010).
    [CrossRef]
  11. M. Agour, C. Falldorf, C. von Kopylow, and R. B. Bergmann, Proc. SPIE 8413, 841318 (2012).
    [CrossRef]
  12. M. Bertero and P. Boccacci, Introduction to Inverse Problem in Imaging (IOP, 1998).
  13. M. R. Teague, J. Opt. Soc. Am. 73, 1434 (1983).
    [CrossRef]
  14. E. Kolenovic, J. Opt. Soc. Am. A 22, 899 (2005).
    [CrossRef]
  15. P. Almoro, G. Pedrini, and W. Osten, Appl. Opt. 45, 8596 (2006).
    [CrossRef]
  16. M. Agour, C. Falldorf, and C. von Kopylow, J. Opt. 12, 055401 (2011).
    [CrossRef]
  17. C. Falldorf, C. von Kopylow, and R. B. Bergmann, in Proceedings of IEEE Conference on Information Optics (WIO) 9th Euro-American Workshop (IEEE, 2010), pp. 1–3.

2012 (2)

C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, J. Opt. 14, 065701 (2012).
[CrossRef]

M. Agour, C. Falldorf, C. von Kopylow, and R. B. Bergmann, Proc. SPIE 8413, 841318 (2012).
[CrossRef]

2011 (2)

M. Agour, C. Falldorf, and C. von Kopylow, J. Opt. 12, 055401 (2011).
[CrossRef]

M. Agour, C. Falldorf, C. von Kopylow, and R. B. Bergmann, Appl. Opt. 50, 4779 (2011).
[CrossRef]

2010 (3)

C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, Appl. Opt. 49, 1826 (2010).
[CrossRef]

C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, AIP Conf. Proc. 1236, 259 (2010).
[CrossRef]

M. Agour, P. Huke, C. von Kopylow, and C. Falldorf, AIP Conf. Proc. 1236, 265 (2010).
[CrossRef]

2006 (1)

2005 (1)

1983 (1)

1979 (1)

1977 (1)

J. N. Butters, Opt. Laser Technol. 9, 117 (1977).
[CrossRef]

1972 (1)

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

Agour, M.

C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, J. Opt. 14, 065701 (2012).
[CrossRef]

M. Agour, C. Falldorf, C. von Kopylow, and R. B. Bergmann, Proc. SPIE 8413, 841318 (2012).
[CrossRef]

M. Agour, C. Falldorf, C. von Kopylow, and R. B. Bergmann, Appl. Opt. 50, 4779 (2011).
[CrossRef]

M. Agour, C. Falldorf, and C. von Kopylow, J. Opt. 12, 055401 (2011).
[CrossRef]

C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, Appl. Opt. 49, 1826 (2010).
[CrossRef]

M. Agour, P. Huke, C. von Kopylow, and C. Falldorf, AIP Conf. Proc. 1236, 265 (2010).
[CrossRef]

C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, AIP Conf. Proc. 1236, 259 (2010).
[CrossRef]

Almoro, P.

Bergmann, R. B.

M. Agour, C. Falldorf, C. von Kopylow, and R. B. Bergmann, Proc. SPIE 8413, 841318 (2012).
[CrossRef]

C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, J. Opt. 14, 065701 (2012).
[CrossRef]

M. Agour, C. Falldorf, C. von Kopylow, and R. B. Bergmann, Appl. Opt. 50, 4779 (2011).
[CrossRef]

C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, Appl. Opt. 49, 1826 (2010).
[CrossRef]

C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, AIP Conf. Proc. 1236, 259 (2010).
[CrossRef]

C. Falldorf, C. von Kopylow, and R. B. Bergmann, in Proceedings of IEEE Conference on Information Optics (WIO) 9th Euro-American Workshop (IEEE, 2010), pp. 1–3.

Bertero, M.

M. Bertero and P. Boccacci, Introduction to Inverse Problem in Imaging (IOP, 1998).

Boccacci, P.

M. Bertero and P. Boccacci, Introduction to Inverse Problem in Imaging (IOP, 1998).

Butters, J. N.

J. N. Butters, Opt. Laser Technol. 9, 117 (1977).
[CrossRef]

Falldorf, C.

C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, J. Opt. 14, 065701 (2012).
[CrossRef]

M. Agour, C. Falldorf, C. von Kopylow, and R. B. Bergmann, Proc. SPIE 8413, 841318 (2012).
[CrossRef]

M. Agour, C. Falldorf, C. von Kopylow, and R. B. Bergmann, Appl. Opt. 50, 4779 (2011).
[CrossRef]

M. Agour, C. Falldorf, and C. von Kopylow, J. Opt. 12, 055401 (2011).
[CrossRef]

C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, Appl. Opt. 49, 1826 (2010).
[CrossRef]

M. Agour, P. Huke, C. von Kopylow, and C. Falldorf, AIP Conf. Proc. 1236, 265 (2010).
[CrossRef]

C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, AIP Conf. Proc. 1236, 259 (2010).
[CrossRef]

C. Falldorf, C. von Kopylow, and R. B. Bergmann, in Proceedings of IEEE Conference on Information Optics (WIO) 9th Euro-American Workshop (IEEE, 2010), pp. 1–3.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

Huke, P.

M. Agour, P. Huke, C. von Kopylow, and C. Falldorf, AIP Conf. Proc. 1236, 265 (2010).
[CrossRef]

Hung, Y. Y.

Jüptner, W.

U. Schnars and W. Jüptner, Digital Holography (Springer, 2005).

Kolenovic, E.

Kreis, Th.

Th. Kreis, Holographic Interferometry, W. Jüptner and W. Osten, eds., 1st ed. (Akademie, 1996).

Osten, W.

Pedrini, G.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

Schnars, U.

U. Schnars and W. Jüptner, Digital Holography (Springer, 2005).

Teague, M. R.

von Kopylow, C.

C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, J. Opt. 14, 065701 (2012).
[CrossRef]

M. Agour, C. Falldorf, C. von Kopylow, and R. B. Bergmann, Proc. SPIE 8413, 841318 (2012).
[CrossRef]

M. Agour, C. Falldorf, C. von Kopylow, and R. B. Bergmann, Appl. Opt. 50, 4779 (2011).
[CrossRef]

M. Agour, C. Falldorf, and C. von Kopylow, J. Opt. 12, 055401 (2011).
[CrossRef]

C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, Appl. Opt. 49, 1826 (2010).
[CrossRef]

M. Agour, P. Huke, C. von Kopylow, and C. Falldorf, AIP Conf. Proc. 1236, 265 (2010).
[CrossRef]

C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, AIP Conf. Proc. 1236, 259 (2010).
[CrossRef]

C. Falldorf, C. von Kopylow, and R. B. Bergmann, in Proceedings of IEEE Conference on Information Optics (WIO) 9th Euro-American Workshop (IEEE, 2010), pp. 1–3.

AIP Conf. Proc. (2)

C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, AIP Conf. Proc. 1236, 259 (2010).
[CrossRef]

M. Agour, P. Huke, C. von Kopylow, and C. Falldorf, AIP Conf. Proc. 1236, 265 (2010).
[CrossRef]

Appl. Opt. (4)

J. Opt. (2)

C. Falldorf, M. Agour, C. von Kopylow, and R. B. Bergmann, J. Opt. 14, 065701 (2012).
[CrossRef]

M. Agour, C. Falldorf, and C. von Kopylow, J. Opt. 12, 055401 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Laser Technol. (1)

J. N. Butters, Opt. Laser Technol. 9, 117 (1977).
[CrossRef]

Optik (1)

R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

Proc. SPIE (1)

M. Agour, C. Falldorf, C. von Kopylow, and R. B. Bergmann, Proc. SPIE 8413, 841318 (2012).
[CrossRef]

Other (4)

M. Bertero and P. Boccacci, Introduction to Inverse Problem in Imaging (IOP, 1998).

Th. Kreis, Holographic Interferometry, W. Jüptner and W. Osten, eds., 1st ed. (Akademie, 1996).

U. Schnars and W. Jüptner, Digital Holography (Springer, 2005).

C. Falldorf, C. von Kopylow, and R. B. Bergmann, in Proceedings of IEEE Conference on Information Optics (WIO) 9th Euro-American Workshop (IEEE, 2010), pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Sketch of the SLM-based setup. An object is imaged at the imaging plane using a OBJ. Two identical lenses are arranged in a 4f configuration that provides a 1:1 image across the camera plane. A reflective phase-only SLM is located in the corresponding Fourier plane that enables linear filter operations. A λ/2 plate and a linear polarizer P are required to adjust the polarization of the wave field in accordance with the requirements of the SLM. The variable aperture V is used to adapt the speckle size of the generated speckle field according to the pixel size of the camera used. A photo of the production design of the system is depicted by the inset.

Fig. 2.
Fig. 2.

Investigated sample of carbon reinforced plastic. (a) Front side and (b) the backside of the inspected sample. The sample has a second structure attached to the backside behind the center of its surface.

Fig. 3.
Fig. 3.

Experimental results. (a) Intensity of the wave field generated across the input plane of the setup, i.e., image plane. (b) Retrieved phase information after 50 iterations for the initial state. (c) Subtraction of the two phase distributions recovered in both states. (d) Deformation calculated from (c). All distributions are 1024×1024 pixels and each pixel is 6.45 μm.

Metrics