Abstract

We report fabrication of THz fiber Bragg gratings (TFBG) using CO2 laser inscription on subwavelength step-index polymer fibers. A fiber Bragg grating with 48 periods features a 4GHz-wide stop band and 15dB transmission loss in the middle of a stop band. The potential of such gratings in the design of resonant sensors for the monitoring of paper quality is demonstrated. Experimental spectral sensitivity of the TFBG-based paper thickness sensor was found to be 0.67GHz/10μm. A 3D electromagnetic model of a Bragg grating was used to explain experimental findings.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Rutz, M. Koch, L. Micele, and G. de Portu, Appl. Opt. 45, 8070 (2006).
    [CrossRef]
  2. Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, J. Korean Phys. Soc. 49, 513 (2006).
    [CrossRef]
  3. B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, Opt. Express 19, 24884 (2011).
    [CrossRef]
  4. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, Opt. Lett. 31, 308 (2006).
    [CrossRef]
  5. S. F. Zhou, L. Reekie, H. P. Chan, Y. T. Chow, P. S. Chung, and K. M. Luk, Opt. Express 20, 9564 (2012).
    [CrossRef]
  6. S. F. Zhou, H. P. Chan, L. Reekie, Y. T. Chow, P. S. Chung, and K. M. Luk, in Proceedings of 37th International Conference on Infrared, Millimeter, and Terrahertz Waves (IRMMW-THz) (IEEE, 2012), pp. 23–28.
  7. T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998).
    [CrossRef]
  8. Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, J. Lightwave Technol. 21, 1320 (2003).
    [CrossRef]
  9. P. Mousavi, F. Haran, D. Jez, F. Santosa, and J. S. Dodge, Appl. Opt. 48, 6541 (2009).
    [CrossRef]
  10. A. Mazhorova, J. F. Gu, A. Dupuis, M. Peccianti, O. Tsuneyuki, R. Morandotti, H. Minamide, M. Tang, Y. Wang, H. Ito, and M. Skorobogatiy, Opt. Express 18, 24632 (2010).
    [CrossRef]
  11. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]

2012

2011

2010

2009

2006

2003

1998

T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998).
[CrossRef]

1997

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Chan, H. P.

S. F. Zhou, L. Reekie, H. P. Chan, Y. T. Chow, P. S. Chung, and K. M. Luk, Opt. Express 20, 9564 (2012).
[CrossRef]

S. F. Zhou, H. P. Chan, L. Reekie, Y. T. Chow, P. S. Chung, and K. M. Luk, in Proceedings of 37th International Conference on Infrared, Millimeter, and Terrahertz Waves (IRMMW-THz) (IEEE, 2012), pp. 23–28.

Chen, H. W.

Chen, L. J.

Chow, Y. T.

S. F. Zhou, L. Reekie, H. P. Chan, Y. T. Chow, P. S. Chung, and K. M. Luk, Opt. Express 20, 9564 (2012).
[CrossRef]

S. F. Zhou, H. P. Chan, L. Reekie, Y. T. Chow, P. S. Chung, and K. M. Luk, in Proceedings of 37th International Conference on Infrared, Millimeter, and Terrahertz Waves (IRMMW-THz) (IEEE, 2012), pp. 23–28.

Chung, P. S.

S. F. Zhou, L. Reekie, H. P. Chan, Y. T. Chow, P. S. Chung, and K. M. Luk, Opt. Express 20, 9564 (2012).
[CrossRef]

S. F. Zhou, H. P. Chan, L. Reekie, Y. T. Chow, P. S. Chung, and K. M. Luk, in Proceedings of 37th International Conference on Infrared, Millimeter, and Terrahertz Waves (IRMMW-THz) (IEEE, 2012), pp. 23–28.

Cundiff, S. T.

de Portu, G.

Dodge, J. S.

Dupuis, A.

Erdogan, T.

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Gaylord, T. K.

T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998).
[CrossRef]

Glytsis, E. N.

T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998).
[CrossRef]

Gu, J. F.

Haran, F.

Ito, H.

Jeon, S.-Y.

Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, J. Korean Phys. Soc. 49, 513 (2006).
[CrossRef]

Jez, D.

Jin, Y.-S.

Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, J. Korean Phys. Soc. 49, 513 (2006).
[CrossRef]

Kao, T. F.

Kim, G.-J.

Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, J. Korean Phys. Soc. 49, 513 (2006).
[CrossRef]

Koch, M.

Kosinski, S. G.

T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998).
[CrossRef]

Lu, J. Y.

Luk, K. M.

S. F. Zhou, L. Reekie, H. P. Chan, Y. T. Chow, P. S. Chung, and K. M. Luk, Opt. Express 20, 9564 (2012).
[CrossRef]

S. F. Zhou, H. P. Chan, L. Reekie, Y. T. Chow, P. S. Chung, and K. M. Luk, in Proceedings of 37th International Conference on Infrared, Millimeter, and Terrahertz Waves (IRMMW-THz) (IEEE, 2012), pp. 23–28.

Mazhorova, A.

Mettler, S. C.

T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998).
[CrossRef]

Micele, L.

Minamide, H.

Morandotti, R.

Mousavi, P.

Peccianti, M.

Ran, Z. L.

Rao, Y. J.

Reekie, L.

S. F. Zhou, L. Reekie, H. P. Chan, Y. T. Chow, P. S. Chung, and K. M. Luk, Opt. Express 20, 9564 (2012).
[CrossRef]

S. F. Zhou, H. P. Chan, L. Reekie, Y. T. Chow, P. S. Chung, and K. M. Luk, in Proceedings of 37th International Conference on Infrared, Millimeter, and Terrahertz Waves (IRMMW-THz) (IEEE, 2012), pp. 23–28.

Rutz, F.

Santosa, F.

Scheller, M.

Scherger, B.

Skorobogatiy, M.

Sun, C. K.

Tang, M.

Tsuneyuki, O.

Vengsarkar, A. M.

T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998).
[CrossRef]

Vieweg, N.

Wang, Y.

Wang, Y. P.

Zhou, S. F.

S. F. Zhou, L. Reekie, H. P. Chan, Y. T. Chow, P. S. Chung, and K. M. Luk, Opt. Express 20, 9564 (2012).
[CrossRef]

S. F. Zhou, H. P. Chan, L. Reekie, Y. T. Chow, P. S. Chung, and K. M. Luk, in Proceedings of 37th International Conference on Infrared, Millimeter, and Terrahertz Waves (IRMMW-THz) (IEEE, 2012), pp. 23–28.

Zhu, T.

Appl. Opt.

Electron. Lett.

T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, Electron. Lett. 34, 302 (1998).
[CrossRef]

J. Korean Phys. Soc.

Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, J. Korean Phys. Soc. 49, 513 (2006).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

S. F. Zhou, H. P. Chan, L. Reekie, Y. T. Chow, P. S. Chung, and K. M. Luk, in Proceedings of 37th International Conference on Infrared, Millimeter, and Terrahertz Waves (IRMMW-THz) (IEEE, 2012), pp. 23–28.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Microscope images of (a) the fabricated TFBG and (c) the paper thickness monitoring setup. Schematics of (b) the TFBG 3D geometry and (d) the sensor setup.

Fig. 2.
Fig. 2.

Comparison between simulated and experimental transmission spectra of TFBG.

Fig. 3.
Fig. 3.

Frequency dependence of the refractive index (blue circles) and absorption coefficients (red squares) of the Origami paper.

Fig. 4.
Fig. 4.

Simulated TFBG transmission spectra for a different number of paper layers placed in direct contact with TFBG.

Fig. 5.
Fig. 5.

(a) Experimental TFBG spectra for a different number of paper layers placed in direct contact with TFBG and (b) comparison of the simulated and experimental frequency shifts of the TFBG peak position as a function of the total paper thickness.

Metrics