Abstract

This study presents a liquid lens using electrowetting that employs an oil phase floating in between the conducting fluids. The lens shape has double-sided surfaces and operates with a bias of 0–60 V. The focal length of the lens, with an aperture size of 2 mm, is 5.8mm, and it is converted into an optical power of 172. The lens is sufficient to suppress the fluctuation of fluids due to the external vibration. An image seen through the lens clearly resolves the element better than 6.35LP/mm on USAF 1951 1×.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
    [CrossRef]
  2. B. Berge, 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 227–230.
  3. F. C. Wippermann, P. Schreiber, A. Bruer, and B. Berge, Proc. SPIE 6289, 62890T (2006).
    [CrossRef]
  4. S. Kuipera and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).

2006

F. C. Wippermann, P. Schreiber, A. Bruer, and B. Berge, Proc. SPIE 6289, 62890T (2006).
[CrossRef]

2004

S. Kuipera and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).

2000

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Berge, B.

F. C. Wippermann, P. Schreiber, A. Bruer, and B. Berge, Proc. SPIE 6289, 62890T (2006).
[CrossRef]

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

B. Berge, 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 227–230.

Bruer, A.

F. C. Wippermann, P. Schreiber, A. Bruer, and B. Berge, Proc. SPIE 6289, 62890T (2006).
[CrossRef]

Hendriks, B. H. W.

S. Kuipera and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).

Kuipera, S.

S. Kuipera and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).

Peseux, J.

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Schreiber, P.

F. C. Wippermann, P. Schreiber, A. Bruer, and B. Berge, Proc. SPIE 6289, 62890T (2006).
[CrossRef]

Wippermann, F. C.

F. C. Wippermann, P. Schreiber, A. Bruer, and B. Berge, Proc. SPIE 6289, 62890T (2006).
[CrossRef]

Appl. Phys. Lett.

S. Kuipera and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).

Eur. Phys. J. E

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Proc. SPIE

F. C. Wippermann, P. Schreiber, A. Bruer, and B. Berge, Proc. SPIE 6289, 62890T (2006).
[CrossRef]

Other

B. Berge, 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 227–230.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Lens formation via convex–convex water: double-sided oil lens floating in between the upper and lower water phases.

Fig. 2.
Fig. 2.

Lens formation via floating oil phase. (a) Concave oil phase lens formed by the convex–convex curvature of water phases in the lower and upper sides. (b) Convex oil phase lens. formed by the concave–concave curvature of water phases in the lower and upper sides.

Fig. 3.
Fig. 3.

Lens formation via floating oil phase. (a) Upper radius of oil lens curvature is smaller than that of the lower one. (b) Upper radius of oil lens curvature is larger than that of the lower one.

Fig. 4.
Fig. 4.

Lens fabrication process consisting of 9 steps.

Fig. 5.
Fig. 5.

Three phases of lens fluids with floating oil. (a) Top view and (b) side view.

Fig. 6.
Fig. 6.

Image of USAF chart through the liquid lens: (a) is the image at 0 V and (b) is the image at 60 V, and the target is 10 mm away from the lens.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1S+1S=1f,M=SS,f=MSM+1,

Metrics