Abstract

We propose to insert group velocity dispersion between cascaded phase and amplitude modulation for ultraflat optical frequency comb (OFC) generation. With the dispersion, the sinusoidally varied chirp of the continuous wave light induced by phase modulation becomes linear within a relatively wide time interval. This is useful to improve the flatness of the generated OFC by directly cascaded phase and amplitude modulation. Simulation shows a flat comb of 37 tones within 0.88 dB power variation when the modulation index of the phase modulation reaches 20. An ultraflat comb generator with 10 GHz frequency spacing is also demonstrated. The flatness of the 15 tones around the center wavelength has been improved to 0.98 dB.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
    [CrossRef]
  2. C. Chen, C. F. Zhang, W. Zhang, W. Jin, and K. Qiu, Electron. Lett. 49, 276 (2013).
    [CrossRef]
  3. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, J. Lightwave Technol. 31, 571 (2013).
    [CrossRef]
  4. N. Nishizawa and J. Takayanagi, J. Opt. Soc. Am. B 24, 1786 (2007).
    [CrossRef]
  5. S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
    [CrossRef]
  6. M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, J. Lightwave Technol. 21, 2705 (2003).
    [CrossRef]
  7. T. Sakamoto, T. Kawanishi, and M. Izutsu, Opt. Lett. 32, 1515 (2007).
    [CrossRef]
  8. T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, J. Lightwave Technol. 27, 4297 (2009).
    [CrossRef]
  9. Y. Dou, H. Zhang, and M. Yao, Opt. Lett. 36, 2749 (2011).
    [CrossRef]
  10. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, Opt. Lett. 35, 3234 (2010).
    [CrossRef]
  11. J. Du, Y. Dai, K. P. Lei, and C. Shu, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OSA, 2013), paper JTh2A.17.

2013 (2)

C. Chen, C. F. Zhang, W. Zhang, W. Jin, and K. Qiu, Electron. Lett. 49, 276 (2013).
[CrossRef]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, J. Lightwave Technol. 31, 571 (2013).
[CrossRef]

2011 (1)

2010 (1)

2009 (1)

2008 (1)

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

2007 (3)

2003 (1)

Capmany, J.

Chen, C.

C. Chen, C. F. Zhang, W. Zhang, W. Jin, and K. Qiu, Electron. Lett. 49, 276 (2013).
[CrossRef]

Dai, Y.

J. Du, Y. Dai, K. P. Lei, and C. Shu, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OSA, 2013), paper JTh2A.17.

Delfyett, P. J.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Dou, Y.

Du, J.

J. Du, Y. Dai, K. P. Lei, and C. Shu, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OSA, 2013), paper JTh2A.17.

Fujiwara, M.

Gasulla, I.

Gee, S.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Huang, C.-B.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

Iwatsuki, K.

Izutsu, M.

Jiang, Z.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

Jin, W.

C. Chen, C. F. Zhang, W. Zhang, W. Jin, and K. Qiu, Electron. Lett. 49, 276 (2013).
[CrossRef]

Kani, J.

Kawanishi, T.

Komukai, T.

Leaird, D. E.

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, Opt. Lett. 35, 3234 (2010).
[CrossRef]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

Lei, K. P.

J. Du, Y. Dai, K. P. Lei, and C. Shu, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OSA, 2013), paper JTh2A.17.

Lloret, J.

Long, C. M.

Mora, J.

Nishizawa, N.

Ozdur, I.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Ozharar, S.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Qiu, K.

C. Chen, C. F. Zhang, W. Zhang, W. Jin, and K. Qiu, Electron. Lett. 49, 276 (2013).
[CrossRef]

Quinlan, F.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

Sakamoto, T.

Sales, S.

Sancho, J.

Shu, C.

J. Du, Y. Dai, K. P. Lei, and C. Shu, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OSA, 2013), paper JTh2A.17.

Supradeepa, V. R.

Suzuki, H.

Suzuki, K.

Takachio, N.

Takada, A.

Takayanagi, J.

Teshima, M.

Weiner, A. M.

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, Opt. Lett. 35, 3234 (2010).
[CrossRef]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

Wu, R.

Yamamoto, T.

Yao, M.

Zhang, C. F.

C. Chen, C. F. Zhang, W. Zhang, W. Jin, and K. Qiu, Electron. Lett. 49, 276 (2013).
[CrossRef]

Zhang, H.

Zhang, W.

C. Chen, C. F. Zhang, W. Zhang, W. Jin, and K. Qiu, Electron. Lett. 49, 276 (2013).
[CrossRef]

Electron. Lett. (1)

C. Chen, C. F. Zhang, W. Zhang, W. Jin, and K. Qiu, Electron. Lett. 49, 276 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photon. Technol. Lett. 20, 36 (2008).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

Opt. Lett. (3)

Other (1)

J. Du, Y. Dai, K. P. Lei, and C. Shu, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OSA, 2013), paper JTh2A.17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Configuration of the ultraflat OFC generator.

Fig. 2.
Fig. 2.

Envelope of the generated comb by cascaded PM and MZM without dispersion.

Fig. 3.
Fig. 3.

Comparison of the power (blue solid line) and frequency chirp (red solid line) of the light (a) before and (b) after the DCF; dashed line: shape of the MZM pulse carver in dB.

Fig. 4.
Fig. 4.

Comparison of the phase curve (blue solid line) and fitted parabolic curve (red dashed line) (a) before and (b) after the DCF, and comparison of the chirp (blue solid line) and its linear fit (red dashed line) (c) before and (d) after the DCF.

Fig. 5.
Fig. 5.

Linear regression result of the frequency chirp (red square) and the flatness of the resultant comb lines (blue triangle).

Fig. 6.
Fig. 6.

Principle of the chirp linearization by GVD.

Fig. 7.
Fig. 7.

(a) Spectrum of the calculated ultraflat comb lines (blue solid line) and the envelope of the calculated comb without dispersion (red dashed line) and (b) corresponding waveforms of the calculated combs with (blue solid line) and without dispersion (red dashed line).

Fig. 8.
Fig. 8.

Spectrum of the experimentally generated comb (a) without dispersion and (b) with 13ps/nm accumulated dispersion.

Metrics