Abstract

We report on a compactly packaged Yb-doped fiber-based laser architecture featuring an actively pulse controlled, single-longitudinal-mode seeder and multistage amplifier chain terminated by a “folded” rod-type photonic crystal fiber. In this laser source, stimulated Brillouin scattering (SBS) is the power-limiting factor, but is managed by phase modulating the seeder with a pseudo-random noise signal. Pulse energy/peak power of 2mJ/1.5MW at 10 kHz repetition rate are thus obtained within 1.55ns pulses of peak spectral brightness >20kWcm2sr1Hz1.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. E. Schrader, R. L. Farrow, D. A. V. Kliner, J.-P. Fève, and N. Landru, Opt. Express 14, 11528 (2006).
    [CrossRef]
  2. P. Thielen, E. Cheung, and T. McComb, “Systems and methods for generating an optical pulse,” U.S. patent application2012281199 A1 (February17, 2010).
  3. C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, Opt. Express 20, 21196 (2012).
    [CrossRef]
  4. F. Di Teodoro, in High-Power Laser Handbook, H. Injeyan and G. Goodno, eds. (McGraw-Hill, 2011), pp. 463–498.
  5. S. Palese, E. Cheung, G. Goodno, C.-C. Shih, F. Di Teodoro, T. McComb, and M. Weber, Opt. Express 20, 7422 (2012).
    [CrossRef]
  6. F. Di Teodoro, M. Hemmat, J. Morais, and E. Cheung, Proc. SPIE 7580, 758006 (2010).

2012 (2)

2010 (1)

F. Di Teodoro, M. Hemmat, J. Morais, and E. Cheung, Proc. SPIE 7580, 758006 (2010).

2006 (1)

Cheung, E.

S. Palese, E. Cheung, G. Goodno, C.-C. Shih, F. Di Teodoro, T. McComb, and M. Weber, Opt. Express 20, 7422 (2012).
[CrossRef]

F. Di Teodoro, M. Hemmat, J. Morais, and E. Cheung, Proc. SPIE 7580, 758006 (2010).

P. Thielen, E. Cheung, and T. McComb, “Systems and methods for generating an optical pulse,” U.S. patent application2012281199 A1 (February17, 2010).

Dajani, I.

Di Teodoro, F.

S. Palese, E. Cheung, G. Goodno, C.-C. Shih, F. Di Teodoro, T. McComb, and M. Weber, Opt. Express 20, 7422 (2012).
[CrossRef]

F. Di Teodoro, M. Hemmat, J. Morais, and E. Cheung, Proc. SPIE 7580, 758006 (2010).

F. Di Teodoro, in High-Power Laser Handbook, H. Injeyan and G. Goodno, eds. (McGraw-Hill, 2011), pp. 463–498.

Farrow, R. L.

Fève, J.-P.

Goodno, G.

Hemmat, M.

F. Di Teodoro, M. Hemmat, J. Morais, and E. Cheung, Proc. SPIE 7580, 758006 (2010).

Kliner, D. A. V.

Landru, N.

McComb, T.

S. Palese, E. Cheung, G. Goodno, C.-C. Shih, F. Di Teodoro, T. McComb, and M. Weber, Opt. Express 20, 7422 (2012).
[CrossRef]

P. Thielen, E. Cheung, and T. McComb, “Systems and methods for generating an optical pulse,” U.S. patent application2012281199 A1 (February17, 2010).

Moore, G. T.

Morais, J.

F. Di Teodoro, M. Hemmat, J. Morais, and E. Cheung, Proc. SPIE 7580, 758006 (2010).

Naderi, S.

Palese, S.

Robin, C.

Schrader, P. E.

Shih, C.-C.

Thielen, P.

P. Thielen, E. Cheung, and T. McComb, “Systems and methods for generating an optical pulse,” U.S. patent application2012281199 A1 (February17, 2010).

Weber, M.

Zeringue, C.

Opt. Express (3)

Proc. SPIE (1)

F. Di Teodoro, M. Hemmat, J. Morais, and E. Cheung, Proc. SPIE 7580, 758006 (2010).

Other (2)

P. Thielen, E. Cheung, and T. McComb, “Systems and methods for generating an optical pulse,” U.S. patent application2012281199 A1 (February17, 2010).

F. Di Teodoro, in High-Power Laser Handbook, H. Injeyan and G. Goodno, eds. (McGraw-Hill, 2011), pp. 463–498.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic view of MOPA architecture. AM, amplitude modulation; FM, phase modulation; OI/F, optical isolator+band-passfilter; YDFA, 10/125μm core/cladding diameter Yb-doped fiber amplifier; P, 975 nm wavelength pump beam; BT, backward tap; TYDFA, 25–40 μm core tapered Yb-doped fiber amplifier; LWP, long-wavelength pass filter; L, lens; M, 45° mirror; PCF, 100/290μm core/cladding diameter Yb-doped rod-type photonic crystal fiber amplifier. Red arrows denote the direction of propagation for pulsed light through the MOPA. Inset: cross-sectional microphotograph of the rod-type PCF (pump cladding and core region).

Fig. 2.
Fig. 2.

Linear-scale normalized spectrum of the seeder recorded at the SOA output using a scanning Fabry–Perot spectrometer. Yellow trace, FM OFF; green trace, FM ON. Inset: spectrum (in decibel scale) of the return light detected (using an OSA) through the backward tap at the input of the TYDF amplifier, while the amplifier was generating 270μJ/220kW pulse energy/peak power. The blue trace corresponds to FM OFF and is dominated by the first SBS Stokes peak, 15GHz red-shifted versus the Rayleigh-scattering feature. The red trace corresponds to FM ON. See text for further details.

Fig. 3.
Fig. 3.

Pulse energy, Eout, and corresponding average power, Pout(=Eout×PRF), emitted by the PCF amplifier versus power, Ppump, emitted at the exit facet of the pump diodes’ common delivery fiber. Squares, data; solid line, linear fit. Based on the fit given, the amplifier slope efficiency and transparency points are 43% and 3.6W, respectively. The extraction efficiency, ηext36%, is obtained as ηext=(PoutPin)/Ppump, where Pin is the pulse average power at the amplifier input facet. The amplifier electro-optic efficiency, ηeo19%, is obtained as ηeo=ηext×ηdiode, where ηdiode55% is given by Ppump/Pdc, where Pdc is the conditioned DC electric power drawn by the diodes.

Fig. 4.
Fig. 4.

Pulse power versus time (blue trace) and impulse response (red trace) of the detection apparatus (measured profile of a 5ps pulse).

Fig. 5.
Fig. 5.

(a) Peak-normalized spectrum (logarithmic scale) of the PCF amplifier output recorded at maximum pulse energy (2.2mJ) with 0.1 nm resolution. Inset: 0.02 nm resolution detail of the pulse spectrum.

Fig. 6.
Fig. 6.

1/e2 beam radius (along orthogonal directions) versus distance from waist, measured at 2.2mJ pulse energy. Inset: near-field images of the output beam at the same power (left, zoom into the core region; right, PCF cladding region, the cladding perimeter being denoted by the white dashed circle).

Metrics