Abstract

A synthetic-wavelength interferometry of optical frequency combs is proposed for the pulse-to-pulse alignment in absolute distance measurement. The synthetic wavelength derived from the virtual second harmonic and the real second harmonic is used to bridge the interference intensity peak-finding method and the heterodyne interferometric phase measurement, so that the pulse-to-pulse alignment can be linked directly to single-wavelength heterodyne interferometry. The experimental results demonstrate that the distance measured by the peak-finding method with micrometer accuracy can be improved to the nanometer level by applying the method proposed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Minoshima and H. Matsumoto, Appl. Opt. 39, 5512 (2000).
    [CrossRef]
  2. J. Ye, Opt. Lett. 29, 1153 (2004).
    [CrossRef]
  3. N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, Opt. Lett. 31, 3101 (2006).
    [CrossRef]
  4. K.-N. Joo and S.-W. Kim, Opt. Express 14, 5954 (2006).
    [CrossRef]
  5. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
    [CrossRef]
  6. S. A. Van den Berg, S. T. Persijn, and G. J. P. Kok, Phys. Rev. Lett. 108, 183901 (2012).
    [CrossRef]
  7. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, Nat. Photonics 4, 716 (2010).
    [CrossRef]
  8. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, Opt. Lett. 34, 1982 (2009).
    [CrossRef]
  9. X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, Opt. Express 20, 2725 (2012).
    [CrossRef]
  10. P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, Opt. Express 17, 9300 (2009).
    [CrossRef]
  11. Y. Yamaoka, K. Minoshima, and H. Matsumoto, Appl. Opt. 41, 4318 (2002).
    [CrossRef]
  12. R. Dändliker, R. Thalmann, and D. Prongué, Opt. Lett. 13, 339 (1988).
    [CrossRef]
  13. P. Balling, P. Mašika, P. Křen, and M. Doležal, Meas. Sci. Technol. 23, 094001 (2012).
    [CrossRef]
  14. D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, Opt. Express 17, 7011 (2009).
    [CrossRef]
  15. G. Wu, K. Arai, M. Takahashi, H. Inaba, and K. Minoshima, Meas. Sci. Technol. 24, 015203 (2013).
    [CrossRef]
  16. S. T. Cundiff, J. Phys. D 35, R43 (2002).

2013

G. Wu, K. Arai, M. Takahashi, H. Inaba, and K. Minoshima, Meas. Sci. Technol. 24, 015203 (2013).
[CrossRef]

2012

S. A. Van den Berg, S. T. Persijn, and G. J. P. Kok, Phys. Rev. Lett. 108, 183901 (2012).
[CrossRef]

P. Balling, P. Mašika, P. Křen, and M. Doležal, Meas. Sci. Technol. 23, 094001 (2012).
[CrossRef]

X. Wang, S. Takahashi, K. Takamasu, and H. Matsumoto, Opt. Express 20, 2725 (2012).
[CrossRef]

2010

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, Nat. Photonics 4, 716 (2010).
[CrossRef]

2009

2006

2004

2002

2000

1988

Arai, K.

G. Wu, K. Arai, M. Takahashi, H. Inaba, and K. Minoshima, Meas. Sci. Technol. 24, 015203 (2013).
[CrossRef]

Balling, P.

P. Balling, P. Mašika, P. Křen, and M. Doležal, Meas. Sci. Technol. 23, 094001 (2012).
[CrossRef]

P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, Opt. Express 17, 9300 (2009).
[CrossRef]

Bhattacharya, N.

Braat, J. J. M.

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[CrossRef]

Cui, M.

Cundiff, S. T.

S. T. Cundiff, J. Phys. D 35, R43 (2002).

Dändliker, R.

Doležal, M.

P. Balling, P. Mašika, P. Křen, and M. Doležal, Meas. Sci. Technol. 23, 094001 (2012).
[CrossRef]

Holzwarth, R.

Inaba, H.

G. Wu, K. Arai, M. Takahashi, H. Inaba, and K. Minoshima, Meas. Sci. Technol. 24, 015203 (2013).
[CrossRef]

Joo, K.-N.

Kim, S.-W.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, Nat. Photonics 4, 716 (2010).
[CrossRef]

K.-N. Joo and S.-W. Kim, Opt. Express 14, 5954 (2006).
[CrossRef]

Kim, Y.-J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, Nat. Photonics 4, 716 (2010).
[CrossRef]

Kok, G. J. P.

S. A. Van den Berg, S. T. Persijn, and G. J. P. Kok, Phys. Rev. Lett. 108, 183901 (2012).
[CrossRef]

Kren, P.

P. Balling, P. Mašika, P. Křen, and M. Doležal, Meas. Sci. Technol. 23, 094001 (2012).
[CrossRef]

P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, Opt. Express 17, 9300 (2009).
[CrossRef]

Lee, J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, Nat. Photonics 4, 716 (2010).
[CrossRef]

Lee, K.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, Nat. Photonics 4, 716 (2010).
[CrossRef]

Lee, S.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, Nat. Photonics 4, 716 (2010).
[CrossRef]

Lévêque, S.

Mašika, P.

P. Balling, P. Mašika, P. Křen, and M. Doležal, Meas. Sci. Technol. 23, 094001 (2012).
[CrossRef]

P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, Opt. Express 17, 9300 (2009).
[CrossRef]

Matsumoto, H.

Minoshima, K.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[CrossRef]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[CrossRef]

Persijn, S. T.

S. A. Van den Berg, S. T. Persijn, and G. J. P. Kok, Phys. Rev. Lett. 108, 183901 (2012).
[CrossRef]

Prongué, D.

Salvadé, Y.

Schuhler, N.

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[CrossRef]

Takahashi, M.

G. Wu, K. Arai, M. Takahashi, H. Inaba, and K. Minoshima, Meas. Sci. Technol. 24, 015203 (2013).
[CrossRef]

Takahashi, S.

Takamasu, K.

Thalmann, R.

Urbach, H. P.

Van den Berg, S. A.

Wang, X.

Wei, D.

Wu, G.

G. Wu, K. Arai, M. Takahashi, H. Inaba, and K. Minoshima, Meas. Sci. Technol. 24, 015203 (2013).
[CrossRef]

Yamaoka, Y.

Ye, J.

Zeitouny, M. G.

Appl. Opt.

J. Phys. D

S. T. Cundiff, J. Phys. D 35, R43 (2002).

Meas. Sci. Technol.

G. Wu, K. Arai, M. Takahashi, H. Inaba, and K. Minoshima, Meas. Sci. Technol. 24, 015203 (2013).
[CrossRef]

P. Balling, P. Mašika, P. Křen, and M. Doležal, Meas. Sci. Technol. 23, 094001 (2012).
[CrossRef]

Nat. Photonics

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[CrossRef]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, Nat. Photonics 4, 716 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

S. A. Van den Berg, S. T. Persijn, and G. J. P. Kok, Phys. Rev. Lett. 108, 183901 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of experimental setup. BS1, beam splitter; M14, mirror; I and II indicate the two positions of CR1.

Fig. 2.
Fig. 2.

Diagram of electronic system of experimental setup. LPF, low pass filter; LA12, lock-in amplifier.

Fig. 3.
Fig. 3.

Diagram of heterodyne signals generation for (a) the fundamental and (b) the second harmonic.

Fig. 4.
Fig. 4.

Optical spectrum of the fundamental and SH. (a) Fundamental in probe arm, (b) fundamental in reference arm, (c) SH in probe arm, and (d) SH in reference arm.

Fig. 5.
Fig. 5.

Experimental results versus the data obtained by the reference interferometer. (a) Distance data measured, (b) linear fitting of the data measured, (c) residuals of final results, (d) intermediate residuals obtained by applying the phase of the synthetic wavelength for the measurement, and (e) intermediate residuals obtained by applying the interference intensity peak-finding method.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

fref.(m)=mfrep+fceo+fΔ1,
fpro.(m)=mfrep+fceo.
δ1=4DΔLp-p/ng1=(k1+Δϕ1/2π)λ1,
δ2=4DΔLp-p/ng2=(k2+Δϕ2/2π)λ2,
δs=4DC·ΔLp-p=(ks+Δϕs/2π)λs,

Metrics