Abstract

We present a detailed experimental investigation of a fiber-to-fiber coupling process by characterizing the mode content at the output of the system. In our experiment a single-mode fiber is transversally scanned with respect to a multimode fiber, revealing position-dependent higher-order mode excitation. The outlined measurement system can be used for automated optimization of fundamental mode content and beam quality. Additionally, our approach characterizes the modal transmission properties of the multimode waveguide in its present state and is hence of high relevance for the conception of transport fibers and fiber laser systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, IEEE J. Sel. Top. Quantum Electron. 13, 537 (2007).
    [CrossRef]
  2. A. D. Yablon, Optical Fiber Fusion Splicing (Springer, 2005).
  3. D. Flamm, C. Schulze, R. Brüning, O. A. Schmidt, T. Kaiser, S. Schröter, and M. Duparré, Appl. Opt. 51, 987 (2012).
    [CrossRef]
  4. D. Flamm, O. A. Schmidt, C. Schulze, J. Borchardt, T. Kaiser, S. Schröter, and M. Duparré, Opt. Lett. 35, 3429 (2010).
    [CrossRef]
  5. P. Hofmann, A. Mafi, C. Jollivet-Salvin, N. Peyghambarian, and A. Schülzgen, J. Lightwave Technol. 30, 2289 (2012).
    [CrossRef]
  6. F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Lett. 36, 4572 (2011).
    [CrossRef]
  7. T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, Opt. Express 17, 9347 (2009).
    [CrossRef]
  8. D. Flamm, D. Naidoo, C. Schulze, A. Forbes, and M. Duparré, Opt. Lett. 37, 2478 (2012).
    [CrossRef]
  9. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  10. M. A. Golub, A. M. Prokhorov, I. N. Sisakian, and V. A. Soifer, Sov. J. Quantum Electron. 9, 1866 (1982).
    [CrossRef]
  11. D. Flamm, C. Schulze, D. Naidoo, S. Schröter, A. Forbes, and M. Duparré, J. Lightwave Technol. 31, 1023 (2013).
    [CrossRef]
  12. W. H. Lee, Appl. Opt. 9, 639 (1970).
    [CrossRef]
  13. D. Gloge, Appl. Opt. 10, 2252 (1971).
    [CrossRef]
  14. C. Schulze, A. Lorenz, D. Flamm, A. Hartung, S. Schröter, H. Bartelt, and M. Duparré, Opt. Express 21, 3170 (2013).
    [CrossRef]
  15. ISO 11146-2:2005, “Lasers and laser-related equipment—Test methods for laser beam widths, divergence angles and beam propagation ratios—part 2: general astigmatic beams” (ANSI, 2005).

2013

2012

2011

2010

2009

2007

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, IEEE J. Sel. Top. Quantum Electron. 13, 537 (2007).
[CrossRef]

1982

M. A. Golub, A. M. Prokhorov, I. N. Sisakian, and V. A. Soifer, Sov. J. Quantum Electron. 9, 1866 (1982).
[CrossRef]

1971

1970

Bartelt, H.

Borchardt, J.

Brüning, R.

Duparré, M.

Eberhardt, R.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, IEEE J. Sel. Top. Quantum Electron. 13, 537 (2007).
[CrossRef]

Flamm, D.

Forbes, A.

Gaida, C.

Gloge, D.

Golub, M. A.

M. A. Golub, A. M. Prokhorov, I. N. Sisakian, and V. A. Soifer, Sov. J. Quantum Electron. 9, 1866 (1982).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Hartung, A.

Hofmann, P.

Jansen, F.

Jauregui, C.

Jollivet-Salvin, C.

Kaiser, T.

Klingebiel, S.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, IEEE J. Sel. Top. Quantum Electron. 13, 537 (2007).
[CrossRef]

Lee, W. H.

Limpert, J.

F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Lett. 36, 4572 (2011).
[CrossRef]

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, IEEE J. Sel. Top. Quantum Electron. 13, 537 (2007).
[CrossRef]

Lorenz, A.

Mafi, A.

Naidoo, D.

Otto, H.-J.

Peschel, T.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, IEEE J. Sel. Top. Quantum Electron. 13, 537 (2007).
[CrossRef]

Peyghambarian, N.

Prokhorov, A. M.

M. A. Golub, A. M. Prokhorov, I. N. Sisakian, and V. A. Soifer, Sov. J. Quantum Electron. 9, 1866 (1982).
[CrossRef]

Röser, F.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, IEEE J. Sel. Top. Quantum Electron. 13, 537 (2007).
[CrossRef]

Schmidt, O. A.

Schreiber, T.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, IEEE J. Sel. Top. Quantum Electron. 13, 537 (2007).
[CrossRef]

Schröter, S.

Schulze, C.

Schülzgen, A.

Sisakian, I. N.

M. A. Golub, A. M. Prokhorov, I. N. Sisakian, and V. A. Soifer, Sov. J. Quantum Electron. 9, 1866 (1982).
[CrossRef]

Soifer, V. A.

M. A. Golub, A. M. Prokhorov, I. N. Sisakian, and V. A. Soifer, Sov. J. Quantum Electron. 9, 1866 (1982).
[CrossRef]

Stutzki, F.

Tünnermann, A.

F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Lett. 36, 4572 (2011).
[CrossRef]

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, IEEE J. Sel. Top. Quantum Electron. 13, 537 (2007).
[CrossRef]

Wirth, C.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, IEEE J. Sel. Top. Quantum Electron. 13, 537 (2007).
[CrossRef]

Yablon, A. D.

A. D. Yablon, Optical Fiber Fusion Splicing (Springer, 2005).

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, IEEE J. Sel. Top. Quantum Electron. 13, 537 (2007).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Sov. J. Quantum Electron.

M. A. Golub, A. M. Prokhorov, I. N. Sisakian, and V. A. Soifer, Sov. J. Quantum Electron. 9, 1866 (1982).
[CrossRef]

Other

ISO 11146-2:2005, “Lasers and laser-related equipment—Test methods for laser beam widths, divergence angles and beam propagation ratios—part 2: general astigmatic beams” (ANSI, 2005).

A. D. Yablon, Optical Fiber Fusion Splicing (Springer, 2005).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Supplementary Material (1)

» Media 1: MOV (707 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Coupling setup. MO, microscope objective; SMF, single-mode fiber; NP, nanopositioning unit. (b) Mode analysis setup. L, imaging lens; BS, beam splitter; CGH, computer-generated hologram; FL, Fourier lens. (c) Microscope image illustrating the coupling circumstances of the fibers placed on NP [detail of the red dashed rectangle in (a)].

Fig. 2.
Fig. 2.

Mode analysis of the fiber-to-fiber coupling process. The coupling position of SMF toward MMF was varied within 20.5 μm × 20.5 μm in steps of 0.5μm. (a)–(f) Measured modal powers of the six guided LP modes ρ l 2 ( Δ x , Δ y ) . (g)–(l) Corresponding measured intermodal phase differences Δ ϕ l ( Δ x , Δ y ) . (m)–(p) One-dimensional profiles of the stated modal powers at Δ y = 0 ; see red dashed lines in (a), (b), (d), and (e). One-dimensional profiles of the stated intermodal phase differences (q) at Δ y = 0 of LP 02 and (r) at Δ x = 0 of LP 11 e ; see blue dashed lines in (h) and (i), respectively. A detail of the entire coupling process is depicted in Media 1 additionally.

Fig. 3.
Fig. 3.

Characterization of the coupling process using the beam propagation ratio. The insets (right) show selected near-field measurements of the analyzed multimode beams provided additionally in Media 1.

Metrics