Abstract

We demonstrate a quantum phase flip gate between two QDs that resonantly couple to plasmonic double-bar resonators with asymmetric coupling strengths. Large coupling strengths can be achieved due to the deep subwavelength mode volumes of the optical modes in plasmonic double-bar resonators. High fidelity (98%) and high success probability of the phase gate operation have been obtained when the coupling strength ratio (g2/g1) and resonant mode decay rate (κ/g1) are optimized. The subwavelength-scale plasmonic structures provide tremendous potential for solid-state quantum information processing.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Linear-optics-based entanglement concentration of unknown partially entangled three-photon W states

Hong-Fu Wang, Shou Zhang, and Kyu-Hwang Yeon
J. Opt. Soc. Am. B 27(10) 2159-2164 (2010)

Nondestructive N-atom Greenberger–Horne–Zeilinger state analyzer via the cavity input–output process

Long Zhu, Hong-Fu Wang, Shi-Lei Su, Qi Guo, Li-Li Sun, and Shou Zhang
J. Opt. Soc. Am. B 29(8) 2156-2160 (2012)

Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime

Cong Cao, Chuan Wang, Ling-yan He, and Ru Zhang
Opt. Express 21(4) 4093-4105 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription