Abstract

A realization of a reflectionless power splitter is proposed by use of a metamaterial junction. To design the junction, the electromagnetic wave transmission in multiple connected leads is investigated theoretically and numerically. A closed analytical form is derived for the scattering matrix of any geometry of the interconnected leads. We show that the use of a junction made of ϵ-near-zero (ENZ) material allows production of perfect transmission. This can be achieved by reducing the area of the ENZ junction (squeezing effect) and by tuning the widths of the output leads with respect to the input lead. It is also shown that the same effect is obtained without squeezed junction by using a match impedance zero index material (MIZIM junction).

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription