Abstract

We theoretically investigate the quadratic nonlinear property of a silicon-organic hybrid plasmonic waveguide with a thin polymer layer deposited on top of a silicon slab and covered by a metal cap. Due to the hybridization property of the waveguide modes, efficient phase-matched second harmonic generation (SHG) from mid-infrared (IR) (3.1μm) to near-IR (1.55μm) wavelengths are achieved with a small fabrication-error sensitivity (225nmtolerated waveguide width378nm) and a large bandwidth (Δλ=100nm). The SHG yield is as large as 8.8% for a pumping power of 100 mW.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription